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Association Model 

Although the term ASSOCIATION is used broadly, association model has a specific 

meaning in the literature on CATEGORICAL DATA ANALYSIS.  By association model, we 

refer to a class of statistical models that fit observed frequencies in a cross-classified table 

with the objective of measuring the strength of association between two or more ordered 

categorical variables.  For a two-way table, the strength of association being measured is 

between the two categorical variables that comprise the cross-classified table.  For a 

three-way or higher-way table, the strength of association being measured can be 

between any pair of ordered categorical variables that comprise the cross-classified table.  

While some association models make use of the a priori ordering of the categories, other 

models do not begin with such an assumption and indeed reveal the ordering of the 

categories through estimation.  Association model is a special case of LOGLINEAR MODEL 

or log-bilinear model.   

Leo Goodman should be given the credit for having developed association models.  

His 1979 paper published in the Journal of American Statistical Association set the 

foundation for the field.  This seminal paper was included along with other relevant 

papers in his 1984 book The Analysis of Cross-Classified Data Having Ordered 

Categories.  Here I first present the canonical case for a two-way table before discussing 

extensions for three-way and multi-way tables.  I will also give three examples in 

sociology and demography to illustrate the usefulness of association models.   
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General Setup for a Two-Way Cross-Classified Table  

For the cell of the ith row and the jth column (i = 1,…I, and j = 1,…J) in a two-way table 

of R and C, let fij denote the observed frequency, and Fij the expected frequency under 

some model.  Without loss of generality, a loglinear model for the table can be written as: 

log(Fij) = µ + µi
R + µj

C + µij
RC,  (1) 

where µ is the “main effect,” µR the “row effect,” µC the “column effect,” and µRC the 

“interaction effect,” on the logarithm of the expected frequency.  All the parameters in 

equation (1) are subject to ANOVA-type normalization constraints (see Powers and Xie 

2000, pp.108-110).  It is common to leave µR and µR unconstrained and estimated non-

parametrically.  This practice is also called the “saturation” of the marginal distributions 

of the row and column variables.  What is of special interest is to learn about µRC.  At one 

extreme, µRC may all be zero, resulting in an independence model.  At another extreme, 

µRC may be “saturated,” taking (I-1)(J-1) degrees of freedom, yielding exact predictions 

(Fij = fij for all i and j).   

Typically, the researcher is interested in fitting models between the two extreme 

cases by altering specifications for µRC.   It is easy to show that all ODDS RATIOs in a two-

way table are functions of the interaction parameters (µRC).  Let θij denote a local log-

odds-ratio for a 2x2 subtable formed from four adjacent cells obtained from two adjacent 

row categories and two adjacent column categories:   

θij = log[F(i+1)(j+1)Fij]/ [F(i+1) j Fi (j+1)] , i=1,…I-1, j=1,…J-1.   

  Let us assume that the row and column variables are ordinal on some scales x and 

y.  The scales may be observed or latent.  A linear-by-linear association model is: 

log(Fij) = µ + µi
R + µj

C + βxiyj,  (2) 
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where β is the parameter measuring the association between the two scales x and y 

representing respectively the row and column variables.  If the two scales x and y are 

directly observed or imputed from external sources, estimation of equation (2) is 

straightforward via MAXIMUM LIKELIHOOD ESTIMATION for LOGLINEAR MODELs.   

 

Association Models for a Two-Way Table  

If we do not have extra information about the two scales x and y, we can either impose 

assumptions about the scales or estimate the scales internally.  Different approaches give 

rise to different association models.  Below, I review the most important ones.   

Uniform Association.  If the categories of the variables are correctly ordered, the 

researcher may make a simplifying assumption that the ordering positions form the scales, 

i.e., xi = i, yj = j.  Let me call the practice “integer-scoring.”  The integer-scoring 

simplification results in the uniform association model: 

log(Fij) = µ + µi
R + µj

C + βij.  (3) 

The researcher can estimate the model with actual data to see whether or not this 

assumption holds true.   

Row-Effect and Column-Effect Models.  While the uniform association model is 

based on integer-scoring for both the row and column variables, the researcher may wish 

to invoke it for only the row or the column variable.  When integer scoring is used only 

for the column variable, the resulting model is called the “row-effect model.”  Conversely, 

when integer-scoring is used only for the row variable, the resulting model is called the 

“column-effect model.”  Taking the row-effect model as an example, we can derive the 

following model from equation (2): 
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log(Fij) = µ + µi
R + µj

C + jφi.  (4) 

This model is called the “row-effect model” because the latent scores of the row variable 

(φi = βxi) are revealed by estimation after we apply integer scoring for the column 

variable.  That is, φi is the “row effect” on the association between the row variable and 

the column variable.  Note that the terms “row effect” and “column effect” here have 

different meanings than µi
R and µj

C, which are fitted to saturate the marginal distributions 

of the row and column variables.    

Goodman’s RC Model.  The researcher can take a step further and wish to treat 

both the row and column scores as unknown.  Two of Goodman’s (1979) association 

models are designed to estimate such latent scores.  Goodman’s Association Model I 

simplifies equation (1) to:  

log(Fij) = µ + µi
R + µj

C + jφi  + iϕj,  (5) 

where φi  and ϕj are respectively unknown row and column scores as in the row-effect 

and column-effect models.  However, it is necessary to add three normalization 

constraints in order to uniquely identify the (I+J) unknown parameters of φi  and ϕj.   

Goodman’s Association Model I requires that both the row and column variables 

are correctly ordered a priori, since integer-scoring is used for both, shown in equation 

(5).  This requirement means that the model is not invariant to positional changes in the 

categories of the row and column variables.  If the researcher has no knowledge that the 

categories are correctly ordered, or in fact needs to determine the correct ordering of the 

categories, Model I is not appropriate.  For this reason, Goodman's Association Model II 

has received the most attention.  It is of the form:  

log(Fij) = µ + µi
R + µj

C + βφi ϕj,  (6) 
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where β is the association parameter, and φi and ϕj are unknown scores to be estimated.  

φi and ϕj are subject to four normalization constraints, since each requires the 

normalization of both location and scale.   

 As equation (6) shows, the interaction component (µRC) of Goodman’s 

Association Model II is in the form of multiplication of unknown parameters--log-

bilinear specification.  The model is also known as the “log-multiplicative model,” or 

simply the RC model.  The RC model is very attractive because it allows the researcher 

to estimate unknown parameters even when the categories of the row and the column 

variables may not be correctly ordered.  All that needs to be assumed is the existence of 

the ordinal scales.  The model can reveal the orders through estimation.    

 Table 1 presents a summary comparison of the aforementioned association 

models.  The second column displays the model specification for the interaction 

parameters (µRC).  The number of degrees of freedom for each µRC specification is given 

in the third column (DFm).  If there are no other model parameters to be estimated, the 

degrees of freedom for a model is equal to (I-1)(J-1)-DFm.  The formula for calculating 

the local log-odds-ratio is shown in the last column.   

Table 1: Comparison of Association Models.   

Model  µRC  DFm  θij 

Uniform Association βij 1 β 

Row-Effect jφi (I-1) φi+1-φi 

Column-Effect iϕj (J-1) ϕj+1-ϕj 

Association Model I jφi  + iϕj I+J-3 (φi+1-φi)+(ϕj+1-ϕj) 

Association Model II (RC) βφi ϕj I+J-3 (φi+1-φi)(ϕj+1-ϕj) 
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Goodman’s Association Model II (RC model) can be easily extended to have 

multiple latent dimensions so that µRC of equation (1) is specified as 

µij
RC = Σ βmφim ϕjm, (7) 

where the summation sign is with respect to all possible m dimensions, and the 

parameters are subject to necessary normalization constraints.  Such models are called 

RC(M) models.  See Goodman (1986) for details.   

Association Models for Three-Way and Higher-Way Tables  

Below I mainly discuss the case of a three-way table.  Generalizations to a higher-way 

table can be easily made.  Let R denote row, C denote column, and L denote layer, with 

their categories indexed respectively by i (i=1,…I) , j (j=1,…J), and k (k=1,…K).  In a 

common research setup, the researcher is interested in understanding how the two-way 

association between R and C depends on levels of L.  For example, in a trend analysis, L 

may represent different years or cohorts.  In a comparative study, L may represent 

different nations or groups.  Thus, research attention typically focuses on the association 

pattern between R and C and its variation across layers.   

 Let Fijk denote the expected frequency in the ith row, the jth column, and the kth 

layer.  The saturated loglinear model can be written as: 

log(Fijk) = µ + µi
R + µj

C + µk
L + µij

RC + µik
RL + µjk

CL + µijk
RCL.    (8) 

In a typical research setting, interest centers on the variation of the RC association across 

layers.  Thus, the baseline (for the null hypothesis) is the following conditional 

independence model:   

log(Fijk) = µ + µi
R + µj

C + µk
L + µik

RL + µjk
CL  .    (9) 
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That is to say, the researcher needs to specify and estimate µRC and µRCL in order to 

understand the layer-specific RC association.   

 There are two broad approaches to extending association models that were 

initially developed for a two-way table to a three-way or higher-way table.  The first is to 

specify an association model for the typical association pattern between R and C and then 

estimate parameters that are specific to layers or test whether they are invariant across 

layers (Clogg 1982a).  The general case of the approach is to specify µRC and µRCL in 

terms of the RC model so as to change equation (8) to: 

log(Fijk) = µ + µi
R + µj

C + µk
L + µik

RL + µjk
CL  + βkφik ϕjk.    (10) 

That is, the β, φ, and ϕ parameters can be layer-specific or layer-invariant, subject to 

model specification and statistical tests.  The researcher may also wish to test special 

cases (i.e., the uniform-association, column-effect, and row-effect models) where φ 

and/or ϕ parameters are inserted as integer scores rather than estimated.    

The second approach, called the “log-multiplicative layer-effect model” or 

“unidiff model,” is to allow a flexible specification for the typical association pattern 

between R and C and then to constrain its cross-layer variation to be log-multiplicative 

(Xie 1992).  That is, we give a flexible specification for µRC but constrain µRCL so that 

equation (8) becomes: 

log(Fijk) = µ + µi
R + µj

C + µk
L + µik

RL + µjk
CL  + φk ψij.    (11) 

With the second approach, the RC association is not constrained to follow a particular 

model and indeed can be saturated with (I-1)(J-1) dummy variables.  In a special case 

where the typical association pattern between R and C is the RC model, the two 

approaches coincide, resulting in the three-way RCL log-multiplicative model.  Power 
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and Xie (2000, pp.140-145) provide a more detailed discussion of the variations and the 

practical implications of the second approach.  It should be noted that the two approaches 

are both special cases of a general framework proposed by Goodman (1986) and 

extended in Goodman and Hout (1998).   

Applications 

Association models have been used widely in sociological research.  Below I give three 

concrete examples.  The first example is one of scaling.  See Clogg (1982b) for a detailed 

illustration of this example.  Clogg aimed to scale an ordinal variable that measures 

attitude on abortion.  The variable was constructed from a Guttman scale, and the cases 

that did not conform to the scale-response patterns were grouped into a separate category, 

“error responses.”  To scale the variable, it was necessary to have an “instrument.”  In 

this case, Clogg used a measure of attitude on premarital sex that was collected in the 

same survey.  The underlying assumption was that the scale of the attitude on abortion 

could be revealed from its association with the attitude on premarital sex.  Clogg used the 

log-multiplicative model to estimate the scores associated with the different categories of 

the two variables.  Note that the log-multiplicative RC model assumes that the categories 

are ordinal but not necessarily correctly ordered.  So, estimation reveals the scale as well 

as the ordering.  Through estimation, Clogg showed that the distances between the 

adjacent categories were unequal and that those who gave “error responses” were in the 

middle in terms of their attitudes on abortion.   

 The second example is the application of the log-multiplicative layer-effect model 

to the cross-national study of intergenerational mobility (Xie 1992).  The basic idea is to 

force cross-national differences to be summarized by layer-specific parameters, i.e., φk of 
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equation (11), while allowing and testing different parameterizations of the two-way 

association between father’s occupation and son’s occupation, i.e., ψij.  The φk parameters 

are then taken to represent the social openness or closure of different societies.   

 The third example, which involves the study of human fertility, is non-

conventional in the sense that the basic setup is not loglinear but log-rate.  The data 

structure consists of a table of frequencies (births) cross-classified by age and country 

and a corresponding table of associated exposures (women-years).  The ratio between the 

two yields the country-specific and age-specific fertility rates.  The objective of statistical 

modeling is to parsimoniously characterize the age patterns of fertility in terms of fertility 

level and fertility control for each country.  In conventional demography, this is handled 

using Coale and Trussell’s Mm method.  Xie and Pimentel (1992) show that this method 

is equivalent to the log-multiplicative layer-effect model, with births as the dependent 

variable and exposure as an “offset.”  Thus, the M and m parameters of Coale and 

Trussell’s method can be estimated statistically along with other unknown parameters in 

the model.   

Estimation  

Estimation is straightforward with the uniform, row-effect, column-effect, and 

Goodman’s Association I models.  The user can use any of the computer programs that 

estimate a LOGLINEAR MODEL.  What is complicated is when the RC interaction takes the 

form of the product of unknown parameters—the log-multiplicative or log-bilinear 

specification.  In this case, a reiterative estimation procedure is required.  The basic idea 

is to alternately treat one set of unknown parameters as known while estimating the other 

and to continue the iteration process until both are stabilized.  Special computer programs, 
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such as ASSOC and CDAS, have been written to estimate many of the association 

models.  User-written subroutines in GLIM and STATA are available from individual 

researchers.  For any serious user of association models, I also recommend Lem, a 

program that can estimate different forms of the log-multiplicative model while retaining 

flexibility.  See my website www.yuxie.com for updated information on computer 

subroutines and special programs.   
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