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time–varying outcomes. The classic potential outcome approach
to causal inference generally involves two time periods: units of
analysis are exposed to one of two possible values of the causal
variable, treatment or control, at a given point in time, and values
for an outcome are assessed some time subsequent to exposure. In
this paper, we develop a potential outcome approach for longitudi-
nal situations in which both exposure to treatment and the effects
of treatment are time-varying. In this longitudinal setting, the re-
search interest centers not on only two potential outcomes, but
on a whole matrix of potential outcomes, requiring a complicated
conceptualization of many potential counterfactuals. Motivated
by sociological applications, we develop a simplification scheme—
a weighted composite causal effect that allows identification and
estimation of effects with a number of possible solutions. Our ap-
proach is illustrated via an analysis of the effects of disability on
subsequent employment status using panel data from the Wiscon-
sin Longitudinal Study.

Despite the ongoing philosophical debate regarding whether any re-
lationship can be deemed causal, a significant share of quantitative
research in sociology attempts to establish causal effects. Regression
coefficients, while often not explicitly termed causal effects, are gener-
ally interpreted as indicating how much the dependent variable would
increase or decrease under an intervention in which the value of a par-
ticular independent variable is changed by one unit, while the values
of the other independent variables are held constant (Blalock 1961:17).
Whether or not a regression model has been properly specified does
not, however, justify the interpretation that a coefficient is a causal ef-
fect rather than a partial association without explicit attention to the
conditions under which estimates should or should not be interpreted as
causal effects. Freedman (1987), for example, offers this sharp criticism
of the regression approach commonly practiced in sociology.

All statements about causality can be understood as counterfac-
tual statements (Lewis 1973). The potential outcome approach to causal
inference extends the conceptual apparatus of randomized experiments
to the analysis of nonexperimental data, with the goal of explicitly es-
timating causal effects of particular “treatments” of interest. This ap-
proach has early roots in experimental designs (Neyman 1935) and eco-
nomic theory (Roy 1951), but it has been extended and formalized for
observational studies in statistics (Holland 1986; Rosenbaum and Rubin
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1984, 1983; Rubin 1974) and in economics (Heckman 2005; Heckman,
Ichimura, and Todd 1997, 1998; Manski 1995). The potential outcome
approach has recently gained attention in sociological research (Brand
and Halaby 2006; Harding 2003; Winship and Morgan 1999; Winship
and Sobel 2004).

According to the potential outcome causal model, a “treatment”
is defined as an intervention that can, at least in principle, be given to or
withheld from a unit under study. Each unit has a response or outcome
that would have been observed had the unit received the treatment, yi

t,
and a response that would have been observed had the unit received the
control, yi

c, given n observations (i = 1, . . ., n). The effect caused by the
treatment in place of the control is a comparison of yi

t and yi
c. If both

yi
t and yi

c could be observed for each unit, the causal effect could be di-
rectly calculated. However, each unit receives only one treatment and so
only yi

t or y c
i is observed for each unit. The estimation of a causal effect

therefore requires an inference about the response that would have been
observed for a unit under a treatment condition it did not actually re-
ceive. Moreover, the existing literature on causal inferences assumes the
stable unit treatment value assumption (SUTVA) (Rubin 1978), which
means that the potential outcomes for one unit are unaffected by as-
signment mechanisms and assignment conditions of other units. It is as
if potential outcomes were fixed attributes of the unit, with the observed
assignment condition merely revealing one of them to the researcher.

As per the classic potential outcome approach, units of analysis
are exposed to one of two possible values of the causal variable, treat-
ment or control, at a given point in time, and values for an outcome are
assessed some time subsequent to exposure.1 There is no time variation
implicated in this setup, beyond the fact that the outcome is measured
after exposure to the treatment. Robins and his associates (e.g., Robins,
Hernan, and Brumback 2000) have extended the potential outcome ap-
proach to the time–varying case. Their emphasis is on recovering biases
in epidemiological research that arise from endogenous time–varying
covariates.

In this paper, we utilize the conceptual apparatus of the poten-
tial outcome framework, with its explicit attention to the comparisons

1Efforts are under way to generalize the setting of two treatment conditions
to multiple treatment conditions and continuous treatments, see Imai and Van Dyk
(2004) and Imbens and Hirano (2004).
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needed in order to make causal claims. However, we examine a more
general framework for longitudinal studies and consider the analysis
of causal effects in which both exposure to treatment and the effects
of treatment are time-varying. In this generalized setup, treatment of
a unit can potentially take place at any point in time and the effect of
treatment on an outcome can vary over time subsequent to treatment.
We limit our paper only to the situation where treatment is dichoto-
mous (yes or no), nonrepeatable, and nonreversible.2 That is, a unit can
receive a treatment only once, and the treatment status stays “on” once
a unit receives a treatment. Another way to visualize this is to imagine
that each unit carries an indicator of being treated or not over time.
The indicator can be turned “on” but not “off” once it is turned on. We
are interested in the causal effects of whether and when the indicator is
turned on.

Our limitation to nonrepeatable and nonreversible treatments in
this paper makes our case qualitatively different from situations in which
fixed-effects models are applied to longitudinal data. Fixed-effects mod-
els are powerful statistical tools for causal inference because they con-
trol for unobserved but time-invariant characteristics that may be con-
founders that affect both the causal variable and the outcome variable
in observational studies (Allison 1994; Allison and Christakis 2006; An-
grist and Krueger 2000; Winship and Morgan 1999). However, fixed-
effect models capitalize on the condition that a treatment condition can
be reversed. For a dichotomized treatment, a fixed-effect model utilizes
information effectively only from units that change treatment status over
time—that is, those that change the treatment indicator from “on” to
“off” versus those that change from “off” to “on.” As shown by Cham-
berlain (1984), the comparison of the two-way transitions affords the
researcher a particular leverage with which to net out unobserved but
fixed attributes (see also Powers and Xie 2000, chap. 5) on longitudinal
data. Since our setup does not permit units to transition from the “on”
state to the “off” our conceptual framework is incongruent with the
fixed-effects model.3

2The nonrepeatable, nonreversible event restriction avoids significant com-
plication to the time-varying potential outcome conceptualization. We plan, how-
ever, to consider multiple treatments in a subsequent paper. We discuss this further
in our concluding remarks.

3We thank an anonymous reviewer for pointing this out to us.
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Even for this restricted case, we need to consider a matrix of po-
tential outcomes. Consequently, the causal framework for this setting,
requires a complicated conceptualization of many potential counterfac-
tuals. As we show below, consideration of time-varying treatments and
time-varying outcomes gives rise to a large number of possible contrasts
for potential outcome comparisons. Indeed, the number of such con-
trasts can become unmanageably large with even a moderate number
of time points. Motivated by substantive considerations in sociological
research, we propose a simplifying solution for the analysis of causal
effects with time-varying treatments and time-varying outcomes.

The rest of the paper is organized as follows: (1) We provide no-
tation for individual-level treatment effects in four scenarios: (a) classic
potential outcome setup with two periods, (b) single-time treatment and
time-varying outcomes, (c) time-varying treatments and single-time out-
come, and (d) time-varying treatments and time-varying outcomes. (2)
We define population-level mean treatment effects, including estima-
tion under ignorability and comparison units utilized in the aforemen-
tioned settings. (3) We develop a composite causal effect, in which we
decompose the expected value of the outcome for the comparison units
with a “forward-looking sequential” approach. This approach involves
a weighted combination of comparison units where the weights corre-
spond to when the units are treated or not treated in the observation
period. (4) We illustrate our approach with an empirical example demon-
strating the causal effect of disability on unemployment using panel
data from the Wisconsin Longitudinal Study (WLS). (5) We discuss a
few possibilities of parametric modeling and nonparametric smoothing
strategies. (6) We end the paper with concluding remarks.

1. NOTATION FOR INDIVIDUAL-LEVEL
TREATMENT EFFECTS

The occurrence of a life event, such as disability, can be conceptualized
as a “treatment” for which we wish to establish an effect.4 The estimation

4The U.S. Department of Labor defines disability as visible and nonvisible
physical and mental impairments. Disability is generally defined in the literature,
however, as a physical impairment that limits the kind or amount of work that an
individual can do.
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of a treatment effect on an outcome (such as unemployment) hinges on
a counterfactual; that is, inferences must be made about an outcome
that would have been observed for a treated unit had that unit not been
treated. The potential outcome approach formalizes this counterfactual
view of causal inference and explicitly recognizes that each observational
unit can be conceptualized as potentially having different values of the
dependent variable that correspond to different conditions of the causal
variable (Rosenbaum and Rubin 1983; Rubin 1974). Below, we develop
notation for four different scenarios.

1.1. Classical Two-Period Setup

We first consider the conventional case where an effect is evaluated with-
out attention to the timing of the treatment, beyond the fact that the
outcome is measured subsequent to the occurrence of the treatment. Let
y be an outcome, and let d be a variable scored d = 1 for a treated unit
and d > 1 for a unit that was not treated. The conventional notation is
to let d = 0 for a control unit; however, letting d > 1 will prove useful
as we develop the more general, time-varying case. Letting d > 1 also
makes substantive sense; we know only that a unit was not treated in
this study, not that a unit was never treated. Let yi

s be the potential
values of the outcome variable for unit i, with superscript s represent-
ing treatment status with two possibilities: d = 1 or d > 1. That is,
yi

d=1 is the outcome value if i is treated, and yi
d>1is the outcome value

if i is not treated. Note that notations yi
d=1 and yi

d>1 correspond to
more commonly used notations yi

t and yi
c (Winship and Morgan 1999),

which we also used earlier in the paper.
For unit i, the treatment effect is defined as the difference between

the two potential outcomes in the treatment and control states:

�i = y d=1
i − y d>1

i (1)

Of the two potential outcomes, however, only one is actually observed,
depending on the actual treatment that unit i receives. For example, for a
person who is treated, yi

d=1 is observed while the value that would have
been observed if that person had not been treated, yi

d>1, is unobserved.
Similarly for a person who was not treated, yi

d>1 is observed but not
yi

d=1.
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TABLE 1
Time-Invariant Treatment, Time-Invariant Outcome: Two Potential Outcomes

Ω1 = [2 × 1] 

Outcome 
Measurement 

Period (1)

1

d=1 y d =1

d >1 y d >1

Treatment 
Period

Let us now examine the time component to this conventional
potential outcome framework: A unit is assigned to treatment or control
at a given point in time (period 1), and values for an outcome are assessed
at some fixed time subsequent to the assignment, say the end of period 1.
This conventional, two-period case is depicted in Table 1, which cross-
classifies the treatment period and the outcome measurement period.
There is no time variation implicated in this setup, beyond the fact that
the outcome is measured after treatment assignment (although we refer
to the time of outcome measurement also by period 1).

1.2. Single-Time Treatment and Time-Varying Outcomes

We can easily generalize this two-period setup into one in which the
treatment condition is introduced only at one time (period 1), but out-
comes are assessed at multiple subsequent time points. For example,
we might wish to know the effect of a parental divorce on a child’s
educational attainment at age 20 and at age 25, or the effect of a job
displacement on a worker’s subsequent earnings at multiple time peri-
ods after experiencing the event. To address such causal questions, we
extend the earlier setup by allowing the outcome variable to vary with
time, as depicted in Table 2. Time is treated as discrete in our setup (with
t = 0, 1, . . .T). It may correspond to historical period or age.

In this setup, y is a [2 × (T+1)] matrix of potential outcomes,
with two possible treatment conditions. Outcomes can be measured in
period 0 (i.e., baseline measurement), period 1, and so on all the way
to period T , the final period under study. Note that the restriction of
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time-invariant treatment rules out the possibility that some units may
be treated between time 1 and T . This means that if a unit is not treated
in period 1, it remains untreated by the end of the observation (T). The
causal question is then focused on the comparison of a pair of potential
outcomes at any time (i.e., any column in Table 2). This means that, for
a study of T observation periods, there are T counterfactual compar-
isons. We rewrite equation (1) to incorporate time-varying outcomes as
follows:

�iv = y d=1
iv − y d>1

iv , (2)

where the subscript v = 1, . . .T indicates the outcome measurement
period.

1.3. Time-Varying Treatments and Single-Time Outcome

There are many situations in sociological research in which we are in-
terested in more than two treatment periods. For example, suppose that
we want to know the effect of a disability on subsequent employment
status. The previous two scenarios would restrict us to evaluate the effect
of a disability for an individual at time 1 on employment status at subse-
quent times. However, an individual could be disabled at many different
and substantively interesting time points over the life course. Another
sociological example is the effect of a parental divorce on a child’s educa-
tional attainment. When we define the individual-level effect of a divorce
on high school completion, we are faced with a time-varying treatment
(i.e., a parental divorce can occur at many points in time throughout
childhood) and a single-time outcome (i.e., educational attainment as of
age 20). A time-varying setup would allow for consideration of different
points at which the individual experiences an event.

Table 3 illustrates the scenario in which we have time-varying
treatments and a single-time outcome. Note that this table shows a vec-
tor of potential outcomes for y. Given that treatment is not repeatable,
treatment can occur in period d (d = 1, 2, . . ., T). For units not treated in
the observed T periods, we denote them by the notation d > T . Clearly,
this setup is more complicated than the first scenario, illustrated in
Table 1, in which we have just two potential outcomes for an outcome
measured at time T .
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TABLE 3
Time-Varying Treatment, Time-Invariant Outcome: y is a Vector of Potential

Outcomes

Ω3 = 

Outcome 
Measurement 

Period (T )[(T +1) × 1]

T

d= 1 y T
d =1

d= 2 y T
d =2

. .

. .

. .

d=T -2 y T
d =T -2

d=T -1 y T
d =T -1

d=T y T
d =T

d>T y T
d >T

Treatment 
Period 

Our first task is to define the causal effect of interest. As discussed
earlier, a causal effect entails the comparison of potential outcomes
associated with two possible treatment conditions. If loss of a job at
time t is one treatment condition, the causal effect will depend upon
one’s definition of the reference counterfactual treatment condition.
One possibility, which is a common practice, is to treat the untreated
status (designated by d > T) as the reference counterfactual. Under
this conceptualization, the causal effects associated with treatments at
T different time points correspond to T versions of equation (1), with
treatments specified by times of treatment:

�
t,T
i = y d=t

i − y d>T
i , (3)

with t = 1, . . . T−1.
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However, this practice precludes many other interesting causal
questions. For example, we may be interested in the causal effect of
being treated at one time (say t) versus being treated at another time
(say t’). For many sociological questions, the appropriate comparison is
not whether or not an individual is treated but when treatment occurs.
For example, events such as leaving school and entering sexual union
are likely to happen to most people. For these events, a scientifically
interesting question is not to compare the condition of experiencing
the event to the condition of not experiencing the event, but to evaluate
outcomes associated with different time points at which the event occurs.
That is, we may be interested in the following quantities:

�
t,t′
i = y d=t

i − y d>t′
i , (4)

where t �= t’, t < T , and t’ < T .
This means that we can compare any two elements in the

main column of Table 3. With time-varying treatments, the number of
possible pairwise contrasts thus increases rapidly. Letting T represent
the number of possible treatment periods, the number of possible pair-
wise comparisons is equal to [T(T+ 1) / 2]. If there is one possible treat-
ment period, then there is only one comparison, reducing our setup to
the conventional case comparing the treated versus untreated. If there
are two possible treatment periods, there are three possible pairwise
comparisons: y d=1 with y d>T , y d=2 with y d>T , and y d=1 with y d=2.
They answer the following different questions: (1) What is the causal
effect of treatment at time 1 versus no treatment at all? (2) What is the
causal effect of treatment at time 2 versus no treatment at all? (3) What
is the causal effect of treatment at time 2 versus treatment at time 1? If
there are six possible treatment periods, there are 21 possible pairwise
comparisons.

Furthermore, it is unclear that a comparison of two potential
outcomes associated with specific treatment conditions, as expressed in
equations (3) and (4), is always substantively interpretable. The problem
is rooted in the fact that the actual social process is always cumulative
and in this sense path-dependent. At any given point (i.e., conditional
on past experience), we are interested in the consequences of experi-
encing a treatment. Potential outcomes associated with treatments at
earlier times are no longer relevant and should not serve as reference
counterfactuals for comparison, because they are no longer available
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for the unit to experience. In our setup, the unit at risk for experiencing
a treatment at time t has not experienced the event up to t. If a unit
remains untreated at time t, which is the only alternative to treatment
at time t, the unit could experience treatment at any time subsequent
to t. Given that we do not know which potential outcome associated
with a future treatment condition should be used as reference, we may
find a way to simplify the problem and focus only on treatment infor-
mation at t when assessing the treatment effect at t. This calls for a way
to incorporate future treatment paths into a composite reference at the
present.

Let us consider the effect of divorce on health as an example,
treating divorce as an absorbing state. A person may get a divorce at
time t. When we evaluate the causal effect of getting a divorce at time
t, we take for granted that the person has remained married until t. It
is thus not sensible to ask the causal question of the effect of divorce at
time t versus divorce at an earlier period before t. Rather, an appropriate
question to ask is the causal effect of being divorced at time t versus not
being divorced at time t. If a person remains married at time t, he or she
may be divorced at time t + 1, or at t + 2, and so on. Thus, we focus
on causal questions that center on whether or not an event occurs at
a particular time, with the reference being a composite incorporating
future counterfactuals. In constructing a composite reference, we remain
agnostic about future events and collapse all future paths when assessing
the treatment effect at a particular time. We call this a “forward-looking
approach.”

Using this approach, we define the composite treatment effect at
t on an outcome measured at T, denoted by �t∗

iT , as

�
∗t

i = y d=t
i − y

∗d>t

i , (5)

where yi
d=t is the value of the outcome that would be observed if a unit

is treated in period d = t, t = 1, . . ., T , and y ∗d
i
>t is the value of the

composite outcome for the same unit had that unit not been treated up
to t. Note that in our original setup with SUTVA, potential outcomes
are assumed to be associated with particular times of treatment (shown
in Table 3). In this setup, there is no room for a counterfactual outcome
that is associated with not experiencing an event at t. Thus, the reference
for comparison in equation (5), y ∗d

i
>t, is a composite of counterfactuals

rather than a true counterfactual. For this reason, we add a superscript
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asterisk to denote specifically that this quantity is a composite. For the
special case of t = T , we follow the convention and treat the potential
outcome of the untreated state yi

d>T as a true counterfactual. So, we
simply make y ∗d

i
>t = yi

d>t., omitting the asterisk, if t = T .
For simplicity, we consider only linear combinations when con-

structing the composite. Thus, we can define y ∗d>t
i as

y ∗d>t
i =

T∑
h=1

wih y d=h
i + wT+y d>T

i , (6)

where ws are weights, with the following normalization constraints:

T∑
h=1

wih + wT+ = 1 (7)

As long as SUTVA is assumed for all counterfactual outcomes, a com-
posite as a linear combination of them in the form of equation (6) also
satisfies SUTVA. That is, while y ∗d

iT
>t is not a counterfactual in our

setup, it can be treated like one.

1.4. Time-Varying Treatments and Time-Varying Outcomes

Generalizing the setup further, we now consider the situation in
which we have a time-varying treatment and a time-varying outcome.
Table 4 illustrates this case, where y is a matrix of potential outcomes.
The matrix is a square with (T + 1) rows and (T + 1) columns. Treat-
ment can occur in period 1, period 2, and so on to period T , or not at
all in the observation period. Outcomes can be measured in period 0
(i.e., baseline measurement), period 1, and so on to period T . We do not
include an outcome measurement beyond time T .

The causal questions have a dynamic dimension such that each
particular causal effect of interest entails a different counterfactual. The
matrix is divided by the main diagonal, with diagonal and lower off-
diagonal cells bracketed into boxes, which may be thought of as “black
boxes,” the future of which is unknown at the time of the correspon-
ding outcome measurement. The upper off-diagonal cells refer to po-
tential outcomes associated with specific treatment conditions and mea-
sured outcomes, and the lower off-diagonal cells refer to outcomes only
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for untreated states. Since a potential outcome measured at time v is not
defined after v, we define y d>v

v as the potential outcome at time v when
the unit is not treated by time v.

Let us now illustrate our forward-looking approach in Table 5.
First, consider the second column in the table. Determining the effect
of a treatment for an individual treated in period 1 on an outcome
measured immediately thereafter (i.e., at the end of period 1) involves a
comparison of y d=1

1 with the outcome measured at time 1 for the indi-
vidual’s untreated state at period 1, y d

1
>1, which is a potential outcome

at time 1; either its future outcomes will depend on conditions of treat-
ment in later periods or not treated at all. Similarly, consider an example
from the third column in Table 5. Determining the effect of treatment
for an individual treated in period 2 on an outcome measured at the end
of period 2 involves a comparison of y d=2

2 with y d>2
2 for this same in-

dividual. However, we may wish to make comparisons when outcomes
are measured at a later point than the time of treatment. For example,
we may want to know the effect of treatment for an individual treated
at time 1 on the outcome at T−1. This involves the comparison of the
element of y d=1

i(T−1) to an array of other elements in the T−1 column,
summarized as y ∗d>1

i(T−1).
In general, we can define the composite effect of treatment at t

on an outcome measured at v, denoted by �∗t
iv , as

�∗t
iv = y d=t

iv − y ∗d>t
iv , (8)

where v ≥ t. We define y ∗d>t
iv = y d>t

iv if v = t. When v > t, y ∗d>t
iv is a

composite counterfactual reference, which is analogous to equation (6)
as

y ∗d>t
iv =

v∑
h=t

wih y d=h
iv + wv+y d>v

iv , (9)

with normalization constraints that all weights sum to 1:

v∑
h=1

wih + wv+ = 1 (10)

Our key formula, equation (8), illustrates that, in a time-
varying treatment and time-varying outcome setting, we can consider a
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composite treatment event by two time dimensions, the time of treat-
ment (t) and the time of outcome (v), as long as v ≥ t. That is, the
composite treatment effect can be defined for all upper-diagonal cells in
Table 4, as illustrated by the examples in Table 5. Thus, there are alto-
gether [(T−1)T/2] possibilities. For example, we may want to know
the effect of being treated in period 1 on an outcome measured at
T – 2. This entails a comparison of yT −2

d=1 with potential yT −2 out-
comes for all states not treated by 1. As Table 5 shows, the composite
counterfactual reference turns out to involve all the other elements in
the column labeled (T−2) for the time of the outcome. Suppose instead
that we want to know the effect of treatment in the first period on an
outcome measured at T – 1. Here we compare yd=1

T−1 with a composite
that involves yT−1

d=2, yT−1
d=3, yT−1

d=T−2, yT−1
d=T−1, and yT−1

d>T−1.
The question regarding what composite treatment effects to focus

on in a research setting is a substantive one. At what point in the life cycle
or in what temporal period, for example, does a disability “hurt” the
most? While the WLS does not have detailed data on job characteristics
between 1975 and 1993, it does have a detailed record of employment
status for those years. Suppose that a person is disabled at age 38 and
we observe his or her employment status at age 43. We want to compare
that person’s employment status at age 43 to his or her employment
status at age 43 had he or she not been disabled at age 38.5 We could ask
many similar life cycle or temporal period causal questions: What is the
effect of disability for someone disabled at age 38 on employment status
at age 50? Or, what is the effect of being disabled in 1980 on employment
status measured in 1990? Our approach lends itself to addressing such
questions by explicitly depicting the apt comparisons.

2. ESTIMATION OF POPULATION-LEVEL MEAN
TREATMENT EFFECTS

The fundamental problem of causal inference is that the individual treat-
ment effect is unobservable because one of the quantities needed to cal-
culate it is necessarily missing (Holland 1986). At a given point in time

5Because the WLS is a single cohort, this is akin to asking what the effect
of disability is for an individual disabled in 1978 on employment status in 1983.
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an individual may be exposed to one of two values of the causal vari-
able, treatment or control, but not both. In this section, we first provide
the conventional discussion of estimation under ignorability, followed
by a discussion of the comparison units utilized to estimate treatment
effects in the time-invariant versus the time-varying treatment setting.
We then discuss a weighted composite estimand for the estimation of
mean treatment effects.

2.1. Estimation Under Ignorability

Although an individual-level causal effect is unobservable, average
treatment effects over a population or subpopulation can be iden-
tified, under the assumption that the treatment assignment satisfies
some form of ignorability, exogeneity, or “unconfoundedness”—that
is, controlling for a set of observed covariates. The ignorability as-
sumption requires that the likelihood of treatment be independent
of the potential outcomes associated with different treatment con-
ditions (Angrist and Krueger 2000; Heckman, LaLonde, and Smith
2000; Imbens 2004; Rosenbaum and Rubin 1983). Let us define the
time-invariant average treatment effect by taking the expectation of
equation (1):

E (�) = E (y d=1 − y d>1). (11)

Neither component of this treatment effect has a direct sample analogue
unless there is universal treatment, or treatment is randomly determined
(Heckman 1997). In other words, estimation of this quantity is not
possible without assumptions because the potential outcomes y d= 1 and
y d>1 may be correlated with d. To see this, note that E (y d=1) pertains to
the whole population of units, those actually assigned to treatment and
those actually assigned to control; the same may be done for E (y d>1).
Hence, E (y d= 1) is not necessarily equal to E (y d=1 | d = 1); the latter
expectation is observable by observed treatment status. The two would
be equal only if y d= 1 is mean-independent of d—that is, only if

E
(
y d=1|d = 1

) = E
(
y d=1|d > 1

) = E
(
y d=1), (12)
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where the second and third terms are unobservable. The same argument
applies to E (y d>1). It is equal to the observable E (y d>1 | d>1) only if
y d>1 is mean-independent of d—that is, only if

E
(
y d>1|d > 1

) = E
(
y d>1|d = 1

) = E (y d>1), (13)

where the second and third terms are unobservable.
Randomization is one way to address this problem, to make sure

equations (12) and (13) hold, so that the average treatment effect may be
estimated from observed data. In a randomized experiment, the treat-
ment and control samples are randomly drawn from the same popu-
lation. Therefore, randomization ensures the following independence
condition: (

y d=1, y d>1) � d (14)

This says that the potential outcomes associated with treatment
and control conditions are independent of assignment status. This is, in
the language of Rubin (1974), “ignorable treatment assignment.” Since
the treated and control groups do not systematically differ from each
other, randomized treatment guarantees that the difference-in-means
estimator of the treatment effect is unbiased and consistent. In other
words, with random assignment,

E
(
y d=1 − y d>1) = E

(
y d=1|d = 1

) − E
(
y d>1|d > 1

)
, (15)

where the terms on the right can be estimated by the respective observed
sample means of y for the treated and the control groups.

In observational studies, ignorable treatment assignment is sel-
dom plausible, which means that equations (14) and (15) are unlikely
to hold. Hence, comparing the respective sample means of the treated
and control groups will likely yield a biased estimator of the aver-
age treatment effect because the potential outcomes will not be mean-
independent of d. The typical recourse in this situation is to conjecture
that the potential outcomes are mean-independent of treatment sta-
tus d after conditioning on a set of observable exogenous covariates,
say X, that capture pretreatment characteristics of the units and that
may determine selection into treatment and control groups. Hence, if
we measure all the systematic factors that determine whether or not a
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unit is treated, or given the measured covariates the unmeasured factors
that predict treatment assignment are rendered null, then condition-
ing on these variables would be like randomizing and would render d
mean-independent of the potential outcomes.

Let X denote a vector of observed exogenous pretreatment co-
variates. Ignorable treatment assignment is satisfied conditionally:

(y d=1, y d>1) � d |X. (16)

The mean independence assumption implies that

E (y d>1|d = 1, X) = E (y d>1|d > 1, X) = E (y d>1|X) (17)

and

E (y d=1|d > 1, X) = E (y d=1|d = 1, X) = E (y d=1|X). (18)

Notice that the first equality signs in (17) and (18) establish a relationship
that is analogous to those given in (14) and (15), conditional on the
observed covariates. Equality (17) states that for units actually treated,
their conditional average outcome had they not been treated would have
been just like the conditional average outcome observed for the control
group of untreated units. This implies that the observed sample mean
for the control group is representative of what the mean outcome for the
treated units would have been (i.e., their potential outcome) had they not
been treated. Equality (18) is analogous and has a similar implication.

A second assumption in addition to (16) is needed to exactly
parallel the case of randomization:

0 < P(d = 1|X) < 1, (19)

where P(d = 1 | X) is the probability of assignment to the treatment
group given the set of observed pretreatment covariates. This assump-
tion, sometimes labeled “overlap” (Imbens 2004), states that there is the
possibility of both a nontreated analogue for each treated unit and a
treated analogue for each nontreated unit. If a subgroup (as defined by
X) belongs entirely to either the treated group or the control group, the
overlap assumption is violated, with P(d = 1 | X) equal to 1 or 0. When
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this occurs, it is infeasible to estimate both potential outcomes for the
subgroup.

Under assumptions (16) and (19), the average treatment effect
conditional on X can be written as

E
(
y d=1|d = 1, X

) − E
(
y d>1|d > 1, X

)
, (20)

where both terms can be estimated from observed data. In our discussion
of time-varying treatment effects, we will assume ignorability given a set
of observable covariates X. To avoid complications of endogenous co-
variates in a longitudinal setting (Barber, Murphy, and Verbitsky 2004),
we limit ourselves only to pretreatment covariates that do not vary with
time.

2.2. Comparison Units in a Time-Varying Setting

One practical implication of the preceding discussion is that, in order
to estimate causal effects of a treatment, the researcher needs to find
appropriate comparison units (or “control groups”) that are observa-
tionally equivalent to the treated units. For the classic two-period setup,
untreated units (after appropriate covariate controls) constitute a natu-
ral comparison group so that the average treatment effect is estimated by
the difference expressed in equation (20). When the timing of a treatment
is taken into consideration, however, it is no longer clear what should
be the appropriate comparison units. Depending on the causal ques-
tion asked, the comparison group changes. In this setup, the research
question may center on the causal effect of the timing of treatment. The
untreated group is just a special case in which the event has not occurred
by the end of the observation period. In other words, we can think of the
untreated group as units for which the timing of treatment is censored
(Smith and Maddala 1983).

Consider again Table 3. Any other potential outcome could serve
as a comparison group for another potential outcome. As argued before,
the number of pairwise comparisons can become unmanageably large
even with a moderate number of time points: [T(T+1) / 2]. Our forward-
looking approach leads us to a simplifying solution, one that focuses the
researcher’s attention on the time of treatment, as if the units in question
were momentarily frozen at time t and then randomized into treatment
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versus nontreatment. This solution has two important implications for
defining the appropriate comparison units. First, units that have received
treatment in the past (before t) no longer serve as comparison units.
Second, units that are not treated at t may be treated at a later time or
remain untreated until the end of the study.

More concretely, this simplifying solution yields a composite es-
timand that combines all possible outcomes into a (d > t) comparison
group. We take the expectation of equation (8), conditional on X:

E
(
�∗t

iv|X
) = E

(
y d=t

iv |X) − E
(
y ∗d>t

iv |X)
, (21)

where y ∗
iv

d>t, the composite counterfactual reference, was defined ear-
lier in equation (9). The ignorability assumption means that, conditional
on X, the following is true:

E
(
y d=t

iv |X) = E
(
y d=t

iv |X, d = t
)

(22a)

E
(
y ∗d>t

iv |X) = E
(
y ∗d>t

iv |X, d > t
)
. (22b)

Thus, we can use observed data, which can yield the second terms of
equations (22a) and (22b), to estimate the population average composite
treatment effect defined by equation (21).

This approach forces the researcher to focus on the time of treat-
ment and also significantly reduces the number of potential compar-
isons. For example, let the outcome be measured at T . It significantly
reduces the number of comparisons from [T (T + 1) / 2] to T . If we have
six possible treatment periods, we have six possible composite compar-
isons instead of 21 possible pairwise comparisons. These six compar-
isons include: y d=1 with y ∗d>1, y d=2 with y ∗d>2, y d=3 with y ∗d>3, y d=4

with y ∗d>4, y d=5 with y ∗d>5, and y d=6 with y d>6. As shown earlier
in equation (9), the information set for the composite reference group
for a treatment effect at t depends on the time at which the outcome is
evaluated (denoted by v). The more that v is greater than t, the more
potential treatment-specific future paths are observed.

The literature on causal inference with observational data in
statistics has been developed largely on the ignorability assumption,
which may be unrealistic: the premise is that observational data can be
made analogous to experimental data through statistical controls. For



TIME–VARYING TREATMENTS 415

the classic two-period case, the ignorability assumption is analogous
to single-time random assignments into treatment or control. For our
time-varying treatment case, we need to assume sequential ignorability to
mimic sequential randomization: at each discrete point of treatment t, it
is as if subjects were randomly assigned into treatment and or not treat-
ment. For those who are assigned not to be treated at t, they are at risk
for being assigned to treatment again later. However, we do not impose a
priori the fractions assigned to treatment at different time points. As we
will show later, these fractions serve as appropriate weights in forming
composites. In this paper, we take the Xie and Wu (2005) approach and
use the fractions from observed data.

Hence, instead of looking for a set of comparison units that are
untreated by the end of a study, we call for comparison units that are
untreated at time t. Under ignorability, observed values of untreated
units at time t give us the necessary information about the expected
value of the individual-level composite counterfactual y ∗d>t. We call our
approach forward-looking because units that are treated in the future,
but not in the past, are part of the comparison group.6 For example,
if we are interested in y d=2, we compare this outcome with those units
treated in all subsequent treatment periods—that is, y d=3, y d=4, y d=5,
and so on, and those units not treated in the observation period, y d>T .

Consider again Table 4. Information is utilized across cells to
yield estimates of causal effects. The untreated states in the boxes are
later separated into actual paths; however, we do not know these future
potential paths at each point when the outcome for the treated is mea-
sured. Therefore, for estimation purposes, these states collapse into one
undifferentiated untreated state at time t. With the passage of time since
t, however, states in a box are sorted into future treatment paths, with
outcomes observed associated with the treatment paths.

Whereas units treated at time t serve as a comparison group
for units treated before time t, these units should not be included in a

6Comparing responses of those units treated in d = t with those units
treated in d > t reveals the usefulness of letting d >T , rather than d = 0, for units
never treated in the observation period; that is, the notation is greatly simplified
when all control units correspond to periods greater than the treated period. This
notation would not be possible if we had control units treated at d = 0. See Yunfei,
Propert, and Rosenbaum (2001) for a discussion of the importance of matching
units only on past data rather than future data. In other words, Yunfei et al. (2001)
also use a forward-looking approach.
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comparison group for units treated later than t. Thus, we argue that the
comparison group for counterfactual reasoning with time-varying, non-
repeatable treatments should be forward-looking. Consequently, while
pairwise comparisons are symmetrical, composite comparisons entail
asymmetry. Consider two causal questions: (1) What is the causal ef-
fect of treatment that occurs at d = 1? (2) What is the causal effect of
treatment that occurs at d = 2? The first causal question involves the
comparison between those units treated at d = 1 and those units not
treated at d = 1. The second causal question is only sensible for those
units not treated prior to t = 2. That composite comparisons involve
asymmetry is a reflection of an asymmetrical cumulative social process.

An example that would benefit from our conceptualization, and
a subject matter that has received considerable attention in the sociolog-
ical literature, is the effect of parental divorce on children’s educational
attainment (see Seltzer [1994] for a review of the literature). If we want
to estimate the effect of divorce on high school completion (McLanahan
and Sandefur 1994), we may want to consider a time-varying treatment
(i.e., parental divorce can occur at many points throughout childhood),
and a fixed outcome (i.e., educational attainment as of age 20).7 There
is general agreement that time is an important component of the effects
of parental divorce on children’s achievement; children who are younger
when their parents divorce may be more seriously disadvantaged than
those who are older at the time of disruption. It may also be, however,
that some of the loss of economic, parental, and community resources is
recouped as time passes, such that children who are younger at the time
when the event occurs may have lessened their disadvantage (Hanson,
McLanahan, and Thomson 1998). Our approach is well-suited to con-
sider carefully the comparisons needed in order to estimate the effects
of divorce on achievement for children experiencing parents’ divorce at
different points in time throughout childhood.

Another example is the effect of a job displacement on subse-
quent earnings.8 Using the time-invariant approach, we evaluate the

7McLanahan and Sandefur (1994) use several longitudinal data sets to ad-
dress this question, including the National Longitudinal Survey of Youth (NLSY),
the Panel Study of Income Dynamics (PSID), and the High School and Beyond
Study (HSB).

8Job displacement is generally defined as involuntary job loss due to down-
sizing or restructuring, plant closing or relocation, or lay-off. Displacement is not
the result of a worker quitting or of a worker being fired.
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effect of a displacement for individuals at time 1 on earnings at time 2.
The simple pairwise comparison can tell us the average earnings that
would have been observed for displaced workers had they not been
displaced. The time-invariant setup does not, however, fully reflect the
complexity of longitudinal data structures or the reality of a worker’s
lived experience. A worker could be displaced from a job at any point
in time that he or she was at risk for being displaced. In other words,
those who never receive treatment are a selected subset of those who
are assigned not to receive treatment at time t. This selection process
is difficult to model or control statistically. Imagine an experiment in
which persons are assigned at random to receive or not receive treatment
at time t and among those assigned not to receive treatment at time t,
some will and some will not receive it at t + 1, t + 2, and so on, up until
time T .

Sometimes, data limitations constrain the outcome to be time-
invariant. Brand (2006) examines panel data from the Wisconsin Longi-
tudinal Study and considers displacement events for workers who were
displaced between the years 1975 and 1992, or between the ages of ap-
proximately 35 and 53 years old. The WLS collected data on character-
istics of respondents’ jobs in 1992. Suppose that a worker in the WLS is
displaced at age 38 and we observe his or her earnings in 1992, at age 53.
We want to know what that worker’s earnings at age 53 would have been
had he or she not been displaced at age 38. We can ask numerous similar
questions: What is the effect of displacement for workers displaced at
age 40 on earnings at age 53? Or, what is the effect of being displaced
at age 50 on earnings at age 53? Again, our approach motivates a care-
ful consideration of the comparisons needed for each causal question.
Additionally, data allowing, such as would be the case using data from
the Panel Study of Income Dynamics, earnings could be measured at
multiple time points postdisplacement: 1 year postdisplacement, 5 years
postdisplacement, and so on.

One other example is the effect of disability on subsequent em-
ployment status. The time-invariant setup only allows individuals to be
treated or not treated—that is, to experience disabling events or not, by a
fixed point prior to the outcome variable measured at a later point. The
time-varying setup allows for consideration of different points at which
the individuals experience an event as well as the assessment of out-
comes at multiple points throughout the life course. Charles (2003) uses
longitudinal data from the Panel Study of Income Dynamics (PSID)
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and examines how temporal effects of disability on earnings depend
on the point in the life cycle at which the treated suffer the onset of
impairment. Charles hypothetically asks what the effect of being disa-
bled at age 25 is on earnings at age 50, and how the effect of being
disabled at age 25 on earnings at age 50 differs from the effect of being
disabled at age 40 on earnings at age 50.9 Our approach lends itself to
attend to such a question by explicitly depicting the apt comparisons.
Moreover, Charles’ inquiry involves a fixed outcome. We might further
investigate the effects on earnings at different points in time subsequent
to the onset of disability.

3. COMPOSITE CAUSAL EFFECT FOR TIME-VARYING
TREATMENTS

For simplicity, we drop the notation of conditioning on X, although this
is implicit throughout the remainder of the paper. From equation (21),
we define the average treatment effect of a time-varying treatment on a
time-varying outcome as

δ∗t
v = E

(
y d=t

v

) − E
(
y ∗d>t

v

)
, (23)

where E(yv
d=t) is the expected value of the outcome that would be ob-

served for units treated at d = t. Again, we note v ≥ t. When v = t,
we define E(y ∗

v
d>t) = E(yv

d>t), and equation (23) is reduced to a two-
group comparison case, as in equation (11). When v > t, E(y ∗

v
d>t) is

the expected value of the forward looking composite outcome for units
not treated up until d = t. E(y ∗

v
d>t) is decomposable into a combi-

nation of group-specific expectations associated with subsequent treat-
ment conditions. For a unit that was not treated at d = t, we specify
the counterfactual outcome to follow the principle of forward-looking
sequential expectation. A forward looking sequential approach involves
a weighted combination of those units later treated and those units not

9Several theories could be advanced to address this question. Charles
(2003) hypothesizes that those individuals who became disabled at 25 should have
higher earnings because they would have more years and incentive to adjust to dis-
ability status and acquire “disability capital.” His analysis confirms his hypothesis—
that is, being older at onset causes the losses from disability to be larger and the
recovery to be smaller.
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Treated d = T–2
p(T–2)

Not treated 
at T–2
q(T–2)

Treated d = T–1
p(T–1)

Treated d = T
p(T)

Not treated d > T

Not treated 
at T–1
q(T–1)

Not treated 
at T
q(T)

Note: p( ) + q( ) = 1

FIGURE 1. Forward tree (from d = T−2).

treated at all by v. Under the ignorability assumption of equations (22a)
and (22b), we can use observed data to estimate the two quantities in
equation (23), both for the situation v = t and the situation v > t.

We explicate the general formula for δv
d=t by first discussing three

specific cases. First, consider the case when d = t = T . The average effect
is defined as

δd=T
T = E

(
y d=T

T

) − E
(
y d>T

T

)
. (24)

The outcome can only be assessed at the last period, with v = T .
Figure 1 is a “forward tree” depicting the situation in which t =
T–2, t = T–1, and t = T . If a unit is not treated at T , that unit has
only one possible alternative, to go untreated in the observation period.
In other words, because T is the last possible treatment period, units
cannot be treated after T . As a result, equation (23) is reducible to the
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two-period case as in equation (24)—the simple difference between the
expected value of the outcome for units treated at T and the expected
value of the outcome for units not treated.

Second, consider the situation when t = T – 1. As depicted in
Figure 1, units that were not treated at T – 1 could be either treated
at T or not treated in the observation period. In this case, v can be
measured at two time points, T – 1 or T , but we only consider v = T
here for illustration. As there are two possible paths for units that were
not treated by T – 1, there are two components to E(y ∗

T
d>T−1), shown

as follows:

E
(
y ∗d>T−1

T

) = {
P(d = T | d ≥ T) · E

(
y d=T

T

)
+ [

(1 − P(d = T | d ≥ T)] · E
(
y d>T

T

)}
(25)

where P(d = T | d ≥ T) is the probability of being treated at t = T given
that units were not treated at t = T – 1, E(yT

d=T ) is the expected value
of the outcome for units treated at t = T , and E(yT

d>T ) is the expected
value for units not treated in the observation period.

Third, consider the situation when t = T – 2. The outcome can
be assessed at v = T – 2, T – 1, or T ; again, we consider only v = T
here. As depicted in Figure 1, there are three possible paths for units
that were not treated at T – 2: treated at T – 1, treated at T , or not
treated. Again, we decompose the E (y ∗

T
d>T −2) into its components:

E
(
y∗d>T−2

T

) = [
P(d = T − 1|d ≥ T − 1) · E

(
yd=T−1

T

)]
+ [

P(d > T − 1|d ≥ T − 1) · E
(
y∗d>T−1

T

)]
. (26)

We need to further decompose a part of the second component, E
(y ∗

T
d>T−1), by equation (25). To simplify notation, let p(t) = P(d =

t | d ≥ t), and q(t) = 1 – p(t). Then,

E (y∗d>T−2
T ) = [

p(T − 1) · E
(
y d=T−1

T

)] + [
q(T − 1) · p(T) · E

(
y d=T

T

)]
+[

q(T − 1) q(T) · E
(
y d>T

T

)]
. (27)

Equation (27) shows that the “controls” for treatment at the t = T−2
period consists of three components—that is, the three possible forward-
looking paths (treated at T – 1, treated at T , or not treated) that are
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appropriately weighted by transition probabilities. The transition prob-
ability is cumulative between the treatment period and the period of
decomposition. For example, the third component in (27) contains the
product of q(T) and q(T – 1).

We now present a general formula. The E (y ∗d>t
v ) term in equa-

tion (23) is decomposable into additive components corresponding to
counterfactuals by treatment periods from t to v, plus a component
corresponding to the counterfactual for untreated status by v. Each
“treated” component contains an expected value associated with being
treated at a time period t ′, t < t ′ ≤v, with weights equal to the product
of q()s (of not being treated) up to t’ and p(t’) (of being treated). For
the untreated condition by v, we use the product of q()s as the weight.
Thus, we derive the following formula:

δd=t
v = E

(
y d=t

v

) −
v∑

t′=t+1

{[
t′−1∏

h=t+1
q(h)

]
· p(t′) · E

(
y d=t′

v

)}

−
{[

v∏
h=t+1

q(h)
]

· E
(
y d>v

v

)}
,

(28)

where v ranges from {t+1, . . . T}, and the q(h) term requires that t’ >

t; otherwise, the q(h) term equals 1. The p() and q() weights in equation
(28) are assigned based on how likely it is that units are treated or not
treated at each possible treatment period—that is, the probabilities of
being in each cell. In general, weights are assigned based on marginal
probabilities estimated from observed data, as was done in Xie and
Wu (2005). This approach allows weights to be determined by social
processes that have naturally occurred.

4. AN EMPIRICAL EXAMPLE

We demonstrate our approach by taking up our previously men-
tioned example of the effect of the onset of a disability on subse-
quent employment status, using data from the Wisconsin Longitudinal
Study (WLS).10 WLS data provide both yearly employment status and

10The Wisconsin Longitudinal Study is a panel study of a cohort of 10,317
Wisconsin high school seniors in 1957. Follow-up data were collected in 1964, 1975,
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disability status for a large sample that is broadly representative of non-
Hispanic white high school graduates over their life course. Our analysis
sample consists of 6739 individuals for whom we have data on employ-
ment status between ages 35 and 65 (or between 1975 and 2005) and
disability status and timing. Of those 6739 individuals, 1575 were dis-
abled at some point between ages 35 and 65.

As a first step, we estimate the effect of a disability that occurred
between ages 35 and 65 on the probability of being unemployed at age
65 using a simple pairwise comparison.11 We adopt a linear probability
model of the following form: 12

E (y v|X) = Pr (y = 1|X) = x′β (29)

We find that persons who were disabled between ages 35 and 65 have an
increased probability of unemployment at age 65 of 0.077 (p = 0.000);
in other words, disabled persons are about 8 percent more likely to be
unemployed than they would be if they had not been disabled.

Disability can occur at various points in time over the course
of an individual’s life. We might hypothesize that there would be dif-
ferences in the likelihood of unemployment depending upon when a
person experiences the onset of a disability. We observe a 30-year life

1992–1993, and 2003–2005. In the early 1990s and 2000s, when WLS respondents
were approximately 53 and 64 years old respectively, retrospective work history was
obtained, providing 30 years of data on employment status. Moreover, in 2003–
2005, respondents were asked whether they had a physical or mental condition that
limited the amount or kind of work that could be done for pay and were asked about
the timing of the onset of such a condition.

11For simplicity, we do not include any covariates in our models other
than a dichotomous indicator of treatment status. We control for sex, a continuous
measure of educational attainment as of age 35, and employment status at baseline
in other models and find that the results are not substantively different from models
without controls for these basic variables.

12Logit or probit models are more commonly used in sociology than a
linear probability model because unless restrictions are placed on β, the estimated
coefficients can imply probabilities outside the interval [0, 1]. Nevertheless, we pre-
fer the linear probability model for two reasons. First, it gives direct sample analogs
to estimands in causal inference, which are usually defined as differences in expec-
tations, as in equation (23); see Angrist (2001) for a discussion. Second, when there
are no other covariates, as in our example, the linear probability model is essentially
nonparametric and thus does not impose a linear functional form on the regression
function.
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FIGURE 2. Flow chart of disability transitions in the Wisconsin Longitudinal Study.

history in the WLS. For simplicity, as well as for the possibility of re-
call bias, we divide this lengthy interval into six 5–year time intervals.13

Figure 2 is a flowchart of disability transitions in the WLS, where the
numbers in parentheses indicate sample sizes at each transition. We be-
gin with a sample of 6739 nondisabled individuals, and those individuals
can either be disabled at age 35–39 or not disabled; those non-disabled
individuals can either be disabled at age 40–44 or not disabled; those
nondisabled by age 44 can either be disabled at age 45–49 or not dis-
abled, and so on. Each transition is associated with a marginal prob-
ability weight p() of being treated or q() of not being treated at that
particular period. For example, among the nondisabled at age 35, the p
(1) weight (treated age 35–39) is equal to 0.007 and the q (1) weight (not
treated age 35–39) is equal to 0.993.14

13While the longitudinal nature of the WLS provides a somewhat excep-
tional setting for demonstrating the usefulness of our approach, we contend that
our approach is well-suited for much shorter time intervals. In fact, any time there
is a potential pathway for future treatment, our approach can be utilized.

14Note that p(1) + q(1) = 1.
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We now consider the case in which we have a vector of potential
outcomes, as depicted in Table 3, such that we have six possible time
periods in which individuals may have been disabled, plus the possibility
that persons are not disabled in the six periods. Employment status is
measured in the last period (i.e., at age 65). Consider the example of
the effect of being disabled between ages 40 and 44 on the probability
of being unemployed at age 65, or approximately 20 years after the
onset of a disability. If we compare those disabled at ages 40–44 to those
not disabled in the observation period (i.e., not disabled age 35–65), a
pairwise comparison, we find an increased probability of unemployment
of 0.215 (p = 0.000). If, however, we compare those disabled at ages 40–
44 to those not disabled until age 40–44, the future of which is unknown
at that particular time, we have five potential paths: persons could have
been disabled at age 45–49 (period 3), disabled at age 50–54 (period 4),
disabled at age 55–59 (period 5), disabled at age 60–64 (period 6), or not
disabled up until age 65. We utilize our composite causal effect estimand
and estimate the treatment effect as follows:15
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)]
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(
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)] ≈ E
(
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(0.019) · E
(
y d=3

6

)] + [
(0.981)(0.046) · E

(
y d=4

6

)]
+ [

(0.981)(0.954)(0.075) · E
(
y d=5

6

)]
+ [

(0.981)(0.954)(0.925)(0.099) · E
(
y d=6

6

)]}
− [

(0.981)(0.954)(0.925)(0.901) · E
(
y d>6

6

)] ≈ 0.753

15We are centrally concerned with identification issues in this paper
(Manski 1995). For simplicity, we ignore statistical inference issues and treat the
point estimates from the sample as if they were true population parameters.
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− {[(0.019) · (0.701)] + [(0.981)(0.046) · (0.661)]

+ [(0.981)(0.954)(0.075) · (0.628)]

+ [(0.981)(0.954)(0.925)(0.099) · (0.543)]}
− [(0.981)(0.954)(0.925)(0.901) · (0.538)] = 0.20 (30)

The composite approach indicates that being disabled at age 40–
44 results in a 20 percent increase in the probability of unemployment at
age 65, rather than a 22 percent increase in the probability of unemploy-
ment using the pairwise approach. Therefore, if we use a simple pairwise
comparison, we overstate the effect of being disabled at ages 40–44. The
reason for this can be easily shown from the expected values in (30); not
being disabled at age 40–44 does not preclude the possibility that one is
disabled at a later age, and being disabled in a later age is associated with
a greater probability of unemployment relative to those never disabled.
If we ignore those potential future pathways, we overstate the effect of
being disabled at an earlier period.

Not only can disability occur at various points in time over
the course of an individual’s life, its effects can be assessed at vari-
ous points in time subsequent to its occurrence. Suppose again that
we are interested in the effect of being disabled age 40–44 on employ-
ment status at age 55, or approximately 10 years following the onset
of a disability. Our counterfactual path includes being disabled at age
45–49, disabled at age 50–54, or not disabled within the observation
window (i.e., up until age 55), as depicted in Figure 2. So we com-
pare the outcome for those disabled at age 40–44 to all possible future
paths, where those disabled in the periods prior to the outcome mea-
surement are sorted into treatment paths while we remain agnostic as
to the occurrence of disability beyond age 55. Using our composite
causal effect formula, this time we have three components or poten-
tial paths: disabled at age 45–49 (period 3), disabled at age 50–54 (pe-
riod 4), or not disabled until age 55. We calculate the treatment effect
as follows:
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4 = E
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4

) −
4∑

t′=3
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4
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(0.954)(0.981) · E
(
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4

)] ≈ 0.274

− {[(0.019) · (0.331)] + [(0.981)(0.046) · (0.265)]}
− [(0.954)(0.981) · (0.134))] = 0.13 (31)

The composite approach indicates that being disabled at age 40–44 re-
sults in a 13 percent increase in the probability of unemployment at age
55; in contrast, a pairwise approach indicates a 14 percent increase in
the probability of unemployment. In this case, we would overstate the
effect of being disabled by about 1percent.

Table 6 (a) provides the effects of being disabled during these six
possible treatment periods on subsequent outcomes using the conven-
tional pairwise approach; Table 6 (b) provides the corresponding effects
using our composite approach. In most cases, the pairwise approach
overstates the effect of a disability on subsequent employment status.
Of course, life course factors dictate changes in employment status over
time, which means that the mean level of unemployment is increasing
over time for both disabled and nondisabled persons. However, when we
compare only the employment status at age 55, or at age 65, for those
individuals disabled at age 40–44 to those never disabled, we are over-
looking some very different future possible paths that disabled persons
at that age might have followed in the absence of a disability. Those
potential pathways include being disabled at later periods, which are
associated with a greater probability of unemployment relative to those
never disabled.

5. ADDITIONAL MODELING STRATEGIES

In our example studying the effect of disability on subsequent em-
ployment status, we used a simple and descriptive method to illustrate
the usefulness of our proposed framework. There are other possible
modeling strategies that can make better use of available data or bet-
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TABLE 6
The Effects of Disability on Employment Status over the Life Course: Wisconsin

Longitudinal Study

(a) Pairwise Comparisons

Outcome Measurement Period (v = Age 40, 45, . . . 65)

Age 40 Age 45 Age 50 Age 55 Age 60 Age 65

d = age 0.184∗∗∗ 0.08 0.219∗∗∗ 0.141∗∗ 0.083 0.079
35–39 (3.44) (1.61) (4.93) (2.80) (1.24) (1.08)
d = age 0.059 0.105∗∗ 0.138∗ 0.138∗ 0.215∗∗∗

40–44 (1.48) (2.95) (2.56) (2.56) (3.67)
d = age 0.151∗∗∗ 0.195∗∗∗ 0.22∗∗∗ 0.162∗∗∗

Treatment 45–49 (5.54) (6.27) (5.33) (3.63)
Period d = age 0.129∗∗∗ 0.18∗∗∗ 0.123∗∗∗

50–54 (6.23) (6.55) (4.14)
d = age 0.053∗ 0.09∗∗∗

55–59 (2.37) (3.72)
d = age 0.005
60–64 (0.23)

(b) Composite Comparisons

Outcome Measurement Period (v = Age 40, 45, . . . 65)

Age 40 Age 45 Age 50 Age 55 Age 60 Age 65

d = age 0.187∗∗∗ 0.079 0.214∗∗∗ 0.131∗ 0.073 0.061
35–39 (3.53) (1.58) (4.74) (2.54) (1.08) (0.84)
d = age 0.059 0.101∗∗ 0.13∗∗ 0.13∗ 0.2∗∗∗

40–44 (1.46) (2.80) (3.14) (2.39) (3.42)
d = age 0.151∗∗∗ 0.19∗∗∗ 0.215∗∗∗ 0.15∗∗∗

Treatment 45–49 (5.51) (6.07) (5.22) (3.37)
Period d = age 0.131∗∗∗ 0.184∗∗∗ 0.116∗∗∗

50–54 (6.37) (6.77) (3.92)
d = age 0.062∗∗ 0.089∗∗∗

55–59 (2.80) (3.72)
d = age 0.005
60–64 (0.23)

Note: Numbers in parentheses are t-ratios.

ter answer scientific questions. We may impose structure (1) to handle
sparse data across cells of the potential outcome matrix; (2) to test the-
oretically derived hypotheses with certain structural constraints; and
(3) to condition on observable covariates. How to implement modeling
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FIGURE 3. Modeling a discontinuity hypothesis.

strategies is a substantive question. In this section, we provide some
examples to demonstrate possible modeling strategies for illustrative
purposes. Consider now the example of the effects of job displacement
on earnings. Several studies have used the Panel Study of Income Dy-
namics (PSID) to assess the effect of job displacement on earnings (see
Fallick [1996] for a review). Figure 3 depicts a simple model of the effects
of displacement on subsequent earnings. For workers who were never
displaced (d > T), the earnings trajectory might follow a steady upward
trajectory.16 For units treated at d = 2 in our hypothetical model, y is
increasing until the event occurs, drops, and then recovers. We may hy-
pothesize that workers enjoy an upward earnings trajectory over time
prior to a job displacement, experience a large drop in earnings immedi-
ately after the displacement event, to be followed by a period of modest
recovery in the years subsequent to displacement.17 A discontinuous
change trajectory, where the reflection point occurs at the time of treat-
ment, can capture shifts in elevation and/or slope. It might also be true
that the effect of treatment differs across the life course or differs accord-
ing to the historical period; for instance, older workers might experience
a steeper initial decline and slower recovery than workers displaced in

16For simplicity, we hypothesize a linear model with logged earnings as
the outcome variable.

17Using the PSID, Ruhm (1991) finds that earnings losses of displaced
workers persist for many years subsequent to the displacement event.
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earlier career stages. In Figure 3, for units treated at d = T – 2, repre-
senting workers displaced at a later time in the life course than those
workers displaced at d = 2, the drop in earnings is larger and the recovery
subsequent to treatment is slower. We could adopt a multilevel approach
to the discontinuity model depicted in Figure 3:

y v = β0 + β1v + β2d + β3 Ev + ev, (32)

where v is historical time, d = 1 if unit i is treated at time v, 0 otherwise,
and Ev is the elapsed time since treatment. Under these definitions,
the growth function for unit i has intercept β 0 and slope β 1 before
treatment. At the time of treatment, unit i experiences an instantaneous
increment β 2. Posttreatment, the unit has intercept β 0 + β 2 and slope
β 1 + β 3. The β coefficients can be specified as randomly varying around
a mean and/or modeled as functions of measurable characteristics of
the person.

If the model above did not meet our theoretical needs, we might
utilize a different approach. For example, we might hypothesize that the
effect of parents’ divorce on children’s educational achievement would
lend itself to a spline approach. Splines are used to impose continuity re-
strictions at the join points so that the line can change direction without
causing an abrupt change in the line itself. In a spline regression model,
a turning point in the outcome is represented by a spline knot that
joins the pretreatment regression line with the posttreatment regression
line.18 We might model a linear-quadratic spline regression to capture
the possibility of a diminishing effect of a parents’ divorce on subsequent
achievement decline. Or, if the response function is unknown, nonpara-
metric regression can be used to explore the nature of the response
function. Two common types of smoothing methods include moving
average filtering and locally weighted scatter plot smoothing (“loess”)
(Cleveland and Devlin 1988). For both methods, each smoothed value is
determined by neighboring data points defined within a specified span.
The loess method fits either a first- or second-order model based on
cases in the neighborhood; each point in the neighborhood is weighted
according to its Euclidean distance.

18Spline regression models have greater flexibility than polynomial regres-
sion models, and they are generally less likely to generate perfect multicollinearity
(Marsh and Cormier 2002).
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6. CONCLUSION

For statistical analyses, it is essential to begin by understanding the
quantities to estimate (Rubin 2005). This is particularly critical when
dealing with causal inference. Assumptions are always needed; it is im-
perative that they be explicated and justified in order to understand the
basis of the conclusions of a study. Also, understanding assumptions im-
posed allows scrutiny and investigation of them and, consequently, the
opportunity for improvement. Increasingly, social scientists are recog-
nizing that the use of the potential outcome framework results in greater
clarity, enabling precise definitions of causal estimands of interest and
evaluation of methods traditionally used to draw causal inferences
(Sobel 2000).

In this paper, we utilize the conceptual apparatus of the poten-
tial outcome, counterfactual approach to causal inference and develop
a more general causal framework for longitudinal studies. We consider
causal effects in which both exposure to treatment and the effects of
treatment are time-varying. We compare the situation in which we have
two potential outcomes to the situation in which we have a vector of
potential outcomes (i.e., for a time-varying treatment and a fixed out-
come), and the situation in which we have a matrix of potential out-
comes (i.e., for a time-varying treatment and a time-varying outcome).
The matrix of potential outcomes requires a complicated conceptual-
ization of many potential counterfactuals. The causal question has a
dynamic dimension, motivating integration of information over future
outcomes.

Researchers repeatedly make decisions about the composition
of control groups. By clearly showing the potential pathways an in-
dividual might follow, we see that inclusion of units treated at later
periods in a control group is a sensible approach in a time-varying
setting. With time-varying treatments and time-varying outcomes, the
number of potential contrasts increases rapidly with passage of time to
the assessment of outcomes, with units in the earlier comparison group
sorted into future paths with associated outcomes. In contrast to the
symmetrical pairwise approach, we develop an asymmetrical composite
comparison group; we decompose the expected value of the outcome
for the controls with a forward-looking sequential approach. This ap-
proach involves a weighted combination of those units later treated and
not treated at all in the observation period. Our approach is an analog
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of ignorability for observational data to sequential-randomization for
experimental data in a time-varying setting

At a superficial level, our approach looks similar to Robins’s
weighting method using the inverse of the propensity score of treat-
ment as the weight, which is also used in longitudinal settings for causal
inference (Barber, Murphy, and Verbitsky 2004; Robins, Hernan, and
Brumback 2000). However, there are two important differences that
set our approach apart from Robins’s approach. First, our weighting
method is asymmetric, with all units at risk of experiencing an event as
controls, regardless of their future treatment paths, while all previously
treated cases are not used as comparisons for those who were later
treated. This asymmetrical treatment is sensible for understanding so-
cial consequences of nonrepeatable treatments but much less so for re-
peatable treatments, such as medication or health behavior. Second,
our weighting scheme is cumulative over all future treatment paths. We
propose this approach because we are interested more in the causal
effects of a treatment at a particular time than those of a generic treat-
ment regardless of time. Thus, we essentially view treatments at different
times as qualitatively different treatments, whereas Robins and his as-
sociates view treatments at different times as essentially interchange-
able.

We have discussed several examples of social research that may
benefit from our approach, including the effects of parental divorce,
job displacement, and disability on subsequent educational attainment,
occupation, and earnings. We briefly illustrated our approach with an
analysis of the effects of disability on employment status using 30 years
of panel data from the Wisconsin Longitudinal Study. Disability is an
inherently time-varying event and subsequent labor force participation
is an inherently time-varying outcome. Our analysis of the causal ef-
fects of disability benefited from our longitudinal approach. We also
discussed additional modeling strategies, including interrupted time se-
ries regression, spline regression, and loess smoothing.

A methodological extension to this approach would be to allow
events to be repeatable. To extend our conceptualization to repeatable
events is significantly more complicated. While many treatments can
be conceptualized as nonrepeatable by treating the initial occurrence
of the event as distinctive, such as an initial displacement event or the
initial onset of a disability or parents’ initial divorce, allowing events
to be repeatable is a substantively important extension. For example,
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in the case of job displacement, Stevens (1997) finds that much of the
persistence in earnings losses among displaced workers can be explained
by additional job losses in the years following an initial displacement.
To accommodate repeatable events would require additional simplifying
assumptions. We leave this task to future development.
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