
Article

Propensity Score–
based Methods Versus
MTE-based Methods in
Causal Inference:
Identification, Estimation,
and Application

Xiang Zhou1 and Yu Xie1

Abstract

Since the seminal introduction of the propensity score (PS) by Rosenbaum
and Rubin, PS-based methods have been widely used for drawing causal infer-
ences in the behavioral and social sciences. However, the PS approach
depends on the ignorability assumption: there are no unobserved confoun-
ders once observed covariates are taken into account. For situations where
this assumption may be violated, Heckman and his associates have recently
developed a novel approach based on marginal treatment effects (MTEs).
In this article, we (1) explicate the consequences for PS-based methods when
aspects of the ignorability assumption are violated, (2) compare PS-based
methods and MTE-based methods by making a close examination of their
identification assumptions and estimation performances, (3) apply these two
approaches in estimating the economic return to college using data from the
National Longitudinal Survey of Youth (NLSY) of 1979 and discuss their dis-
crepancies in results. When there is a sorting gain but no systematic baseline
difference between treated and untreated units given observed covariates,
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PS-based methods can identify the treatment effect of the treated (TT). The
MTE approach performs best when there is a valid and strong instrumental
variable (IV). In addition, this article introduces the ‘‘smoothing-difference
PS-based method,’’ which enables us to uncover heterogeneity across people
of different PSs in both counterfactual outcomes and treatment effects.
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Introduction

Since the seminal introduction of the propensity score (PS) by Rosenbaum

and Rubin (1983), PS-based methods, including matching, stratification, and

weighting, have become a mainstay strategy for drawing causal inferences in

the behavioral and social sciences. By reducing a large array of confounding

variables to a univariate measure that preserves all the relevant information

of potential confounders, the PS provides a more effective tool than covariate

adjustment does for eliminating confounder bias (Rosenbaum and Rubin

1984). Furthermore, social science researchers have recently utilized PS

methods to study heterogeneous treatment effects across individuals with dif-

ferent propensities of being treated. For example, Brand and Xie (2010)

recently found that those students who are least likely to obtain a college edu-

cation benefit most from college.

Like all other attempts to resolve confounding problems in causal infer-

ence, the PS approach is by no means a panacea. The primary limitation

of this approach lies in the impossibility of capturing unobserved individual

and contextual confounders. In fact, the whole justification of PS-based

methods hinges on the common ‘‘ignorability assumption’’: through control

of a given set of relevant observed covariates, treatment status is assumed to

be independent of potential outcomes. This assumption is unverifiable,

indeed unlikely to be true, in practice. For instance, economic theory predicts

that attainment of college education may be selective because it may attract

young persons who are motivated by economic gain from college education

(Carneiro, Heckman, and Vytlacil 2011; Willis and Rosen 1979). This exam-

ple illustrates the effect of ‘‘sorting on gain’’ that may not be captured by

observed covariates such as family background and cognitive abilities.
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Despite the aforementioned limitation, PS-based methods are still widely

used by empirical researchers in a variety of disciplines. Not only is the PS

approach simple and straightforward, but methods of addressing unobserved

selection would require either additional data unavailable to the researcher or

strong assumptions implausible in a research setting. However, the perfor-

mance of PS-based methods is questionable when the ignorability assump-

tion breaks down. Although sensitivity analysis is usually employed to

assess the plausibility of findings (DiPrete and Gangl 2004; Harding

2003), systematic investigation is also needed to directly examine the conse-

quences for PS-based methods when ignorability is violated. A related dis-

cussion can be found in Heckman and Navarro-Lozano (2004), who

compared matching, instrumental variables (IVs), and control functions in

the estimation of economic choice models. Blundell, Dearden, and Sianesi

(2005) also compared least squares, matching, control functions, and IV from

a methodological point of view within a common framework. More recently,

Shadish, Clark, and Steiner (2008) explored the performances of ordinary

least squares (OLS) adjustment and PS adjustment with different sets of pre-

dictors in an experimental setting. Inspired by these studies, this article aims

to provide another examination of PS-based methods in a variety of plausible

situations.

Our article goes beyond PS-based methods by evaluating a structural

approach, developed by James Heckman and his associates, for situations

in which the ignorability assumption is violated (Heckman, Urzua, and

Vytlacil 2006a, 2006b; Heckman and Vytlacil 1999, 2001, 2005). Different

from traditional IV-based methods, this approach is based on the building

block of marginal treatment effect (MTE), which enables us to derive various

parameters of interest within a single framework. However, MTE-based

methods have not been widely used in empirical research (for a few excep-

tions, see Carneiro et al. 2011; Moffitt 2008; Tsai and Xie 2011), partly due

to their complexity and demands on data. In fact, the aforementioned litera-

ture suggests that the utility of MTE hinges heavily on the validity of the

exclusion restriction as well as the strength of IVs.1 The properties of this

approach are not yet well known, when either the exclusion restriction is vio-

lated or the IV is too ‘‘weak.’’

In this article, we evaluate and compare the widely adopted PS-based

methods and the less popular MTE-based approach, as follows. In the second

section, we revisit population heterogeneity and two types of selection bias in

causal inference, presenting PS-based methods and their implications in set-

tings where the ignorability assumption is partially or completely violated. In

particular, we propose a PS-based method by modeling counterfactual
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outcomes as nonparametric functions of the PS, which we call the

‘‘smoothing-difference method.’’ In the third section, we introduce the

MTE-based approach as a remedy for situations where the ignorability

assumption may be violated. In the fourth section, we compare PS- and

MTE-based methods by examining their identification assumptions and esti-

mation performances. We use numerical simulation to explore (1) the rela-

tive efficiency of these two approaches when both ignorability and the

exclusion restriction hold true and (2) the potential biases from using meth-

ods based on the two approaches when neither ignorability nor the exclusion

restriction is guaranteed. In the fifth section, we illustrate both methods in

analyzing the economic return to college education using a sample of white

males from the National Longitudinal Survey of Youth of 1979 (NLSY) and

discuss their discrepancies in results. In the sixth section, we conclude the

article.

Population Heterogeneity, Ignorability, and
PS-based Methods

Population sciences, including economics, demography, epidemiology, psy-

chology, and sociology, treat individual-level variation as a part of reality

subject to scientific inquiry, rather than a mere nuisance or measurement

error (Angrist and Krueger 1999; Ansari and Kamel 2000; Bauer and Curran

2003; Greenland and Poole 1988; Heckman 2001, 2005; Heckman and Robb

1985; Heckman and Vytlacil 2005; Lubke and Muthén 2005; Manski 2007;

Moffitt 1996; Rothman and Greenland 1998; Winship and Morgan 1999; Xie

2007). The recognition of inherent individual-level heterogeneity has impor-

tant consequences for research designs in the social sciences. Because indi-

viduals differ from one another and differ in their responses to a common

treatment, results can vary widely depending on population composition.

The large methodological literature on causal inference using statistical

methods recognizes the importance of and consequently allows for popula-

tion heterogeneity (Heckman and Vytlacil 2005; Holland 1986; Manski

1995; Rubin 1974; Winship and Morgan 1999). Suppose that a population,

U, is being studied. Let Y denote an outcome variable of interest (its realized

value being y) that is defined for each member in U. Let us define treatment

as an externally induced intervention that can, at least in principle, be given

to or withheld from a unit under study. For simplicity, we consider only

dichotomous treatments and use D to denote the treatment status (its realized

value being d), with D ¼ 1 if a member is treated and D ¼ 0 if a member is

not treated. Let subscript i represent the ith member in U. We further denote
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y1
i as the ith member’s potential outcome if treated (i.e., when di ¼ 1), and y0

i

as the ith member’s potential outcome if untreated (i.e., when di ¼ 0). The

framework for counterfactual reasoning in causal inference (Heckman

2005; Holland 1986; Manski 1995; Morgan and Winship 2007; Rubin

1974; Sobel 2000; Winship and Sobel 2004) states that we should conceptua-

lize a treatment effect as the difference in potential outcomes associated with

different treatment states for the same member in U:

di ¼ y1
i � y0

i ; ð1Þ

where di represents the hypothetical treatment effect for the ith member.2

The fundamental problem of causal inference (Holland 1986) is that, for a

given unit i, we observe either y1
i (if di ¼ 1) or y0

i (if di ¼ 0), but not both.

Given this fundamental problem, Holland describes two possible solutions,

the ‘‘scientific solution’’ and the ‘‘statistical solution.’’ The scientific solu-

tion capitalizes on homogeneity in assuming that all members in U are the

same, in either the treated state or the control state: y1
i ¼ y1

j and y0
i ¼ y0

j ,

where j 6¼ i in U. This strong homogeneity assumption would enable a

researcher to identify individual-level treatment effects by as few as two

cases in U. However, as we discussed previously, pervasive heterogeneity

across units is the norm rather than the exception in a population science.

Thus, in general, the scientific solution has no practical value in the social

and behavioral sciences.

Quantities of Interest

For a population science, the statistical solution is a necessity. The statistical

approach is to compute quantities of interest that reveal treatment effects

only at the group level. For example, we may evaluate the average difference

between a set of members in U that were randomly selected for treatment and

another set of members that were randomly selected for control. This com-

parison yields a quantity that is called the average treatment effect (ATE):

ATE ¼ E Y 1 � Y 0
� �

:

While ATE is defined for the whole population, the researcher may wish

to focus on and define a treatment effect for a well-defined subpopulation. In

contexts of program evaluation, for example, researchers may be primarily

interested in the treatment effect of the treated (TT; Heckman and Robb
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1985), which refers to the average difference by treatment status among

those individuals who are actually treated:

TT ¼ E Y 1 � Y 0jD ¼ 1
� �

:

Although various statistical quantities of interest can easily be defined

theoretically with the statistical ‘‘solution,’’ estimating these quantities in

social research can be very difficult, due to two types of selection bias, a

topic to be discussed subsequently.

Two Types of Selection Bias

In the preceding subsection, we established the need to conduct group-level

comparisons for causal inference, because causal inference is impossible at

the individual level. However, due to population heterogeneity, there is no

guarantee that the group that actually receives the treatment is comparable,

in observed and particularly in unobserved contextual and individual charac-

teristics, to the group that does not receive the treatment.3 Individuals may

self-select into treatment based on their anticipated monetary and nonmone-

tary benefits and costs of treatment. To see this, let us partition the total pop-

ulation U into the subpopulation of the treated U1 (for which D ¼ 1) and the

subpopulation of the untreated U0 (for which D ¼ 0). We can thus decom-

pose the expectations for the two counterfactual outcomes as follows:

E Y 1
� �

¼ E Y 1jD ¼ 1
� �

P D ¼ 1ð Þ þ E Y 1jD ¼ 0
� �

P D ¼ 0ð Þ;

and

E Y 0
� �

¼ E Y 0jD ¼ 1
� �

P D ¼ 1ð Þ þ E Y 0jD ¼ 0
� �

PðD ¼ 0Þ:

The issue of selection stems from the scenario

E Y 1jD ¼ 1
� �

6¼ E Y 1jD ¼ 0
� �

6¼ E Y 1
� �

; ð2Þ

and

E Y 0jD ¼ 1
� �

6¼ E Y 0jD ¼ 0
� �

6¼ EðY 0Þ: ð3Þ

Note that what we observe from data are Ê Y 1jD ¼ 1ð Þ; Ê Y 0jD ¼ 0ð Þ;
P̂ D ¼ 1ð Þ; and P̂ðD ¼ 0Þ. Due to inequalities (2) and (3), the simple-

comparison estimator Ê Y1jD ¼ 1
� �

� ÊðY0jD ¼ 0Þ, as a naive estimator for
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ATE, may be contaminated by selection bias. Denoting this estimator by

b̂naive, we can decompose its expectation as follows (Winship and Morgan

1999:667):

E b̂naive

� �
¼ E Y 1jD ¼ 1

� �
� E Y 0jD ¼ 0

� �
¼ E Y 1 � Y 0jD ¼ 1

� �
þ E Y0jD ¼ 1

� �
� E Y0jD ¼ 0

� �
¼ TTþ E Y0jD ¼ 1

� �
� E Y0jD ¼ 0

� �
¼ ATEþ TT� ATEð Þ þ E Y0jD ¼ 1

� �
� E Y0jD ¼ 0

� �
:

ð4Þ

From equation (4), we see two sources of selection bias:

1. The difference in average outcome between the treatment and control

groups if neither group receives treatment: E Y 0jD ¼ 1ð Þ�
EðY 0jD ¼ 0Þ. We call this the ‘‘pretreatment heterogeneity bias’’ or

‘‘type I selection bias.’’

2. The difference in average treatment effect between the treated group

and the entire population. We call this the ‘‘treatment-effect hetero-

geneity bias’’ or ‘‘type II selection bias.’’ There is treatment-effect

heterogeneity bias if and only if TT 6¼ ATE.

We now illustrate the two different sources of selection bias with two con-

crete examples. First, preschool children from poor families are selected into

head start programs and thus would compare unfavorably to other children

who do not attend head start programs without an adequate control for family

socioeconomic resources (Xie 2000). Second, economic theory predicts that

attainment of college education may be selective because it may attract

young persons who are more motivated than their peers to gain from college

education (Willis and Rosen 1979). While the first example reflects the

importance of pretreatment heterogeneity bias that may be represented by

‘‘covariates’’ or ‘‘fixed effects,’’ the second example underscores the possi-

bility of treatment-effect heterogeneity bias—sorting on the treatment

effects—which might not be captured by ‘‘covariates’’ or ‘‘fixed effects.’’

Ignorability and PS

In observational studies, to overcome the two types of selection bias resulting

from nonrandomness in treatment assignment, a natural idea is to control for

observed pretreatment covariates. While it is not possible for a researcher to

claim that he or she has controlled for all of the variables that may affect the

outcome, it is more plausible to assume that the researcher has controlled for
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almost all of the relevant pretreatment covariates that may affect both the

treatment assignment and the outcome, a subset of all the variables

affecting the outcome. In fact, only the covariates that meet the condition

of affecting both the treatment assignment and the outcome may poten-

tially confound the observed relationship between treatment and outcome

(Rubin 1997). Thus, if we assume that all these relevant pretreatment

variables are observed, the treatment status will be independent of poten-

tial outcomes through control of these covariates. This conditional indepen-

dence assumption is called ‘‘ignorability,’’ ‘‘unconfoundedness,’’ or ‘‘selection

on observables.’’ If we let X be the vector of these observed covariates, the

ignorability assumption states:

Y 1; Y 0
� �

��
k DjX : ð5Þ

Because we can never be sure after inclusion of which covariates

relation (5) would hold true, the ignorability condition is always held

as an assumption, indeed an unverifiable assumption. Substantive

knowledge about the subject matter needs to be brought in before a

researcher can entertain the ignorability assumption. Measurement of

theoretically meaningful confounders makes ignorability tentatively

plausible but not necessarily true. However, the researcher can always

consider the ignorability assumption and then assess its plausibility in

a concrete setting through sensitivity or auxiliary analyses (Cornfield

et al. 1959; DiPrete and Gangl 2004; Harding 2003; Rosenbaum 2002;

Xie and Wu 2005).

If the ignorability assumption of equation (5) holds true, we can change

inequalities (2) and (3) into two equations by conditioning on X4:

E Y 1jD ¼ 1;X
� �

¼ E Y 1jD ¼ 0;X
� �

¼ E Y 1jX
� �

; ð6Þ

E Y 0jD ¼ 1;X
� �

¼ E Y 0jD ¼ 0;X
� �

¼ E Y 0jX
� �

: ð7Þ

For now, we are concerned only with identification and postpone infer-

ence issues to a later discussion. Let us define quantities of interest for causal

inference, conditioning on X, as follows:

ATE Xð Þ ¼ E Y 1 � Y 0jX
� �

;

TT Xð Þ ¼ E Y 1 � Y 0jD ¼ 1;X
� �

;

Similarly, we define the naive estimator conditioning on X as:

10 Sociological Methods & Research 45(1)



b̂naive Xð Þ ¼ Ê Y 1jD ¼ 1;X
� �

� Ê Y 0jD ¼ 0;X
� �

:

Then equations (6) and (7) imply the following identity,

E b̂naive Xð Þ
� �

¼ ATE Xð Þ ¼ TT Xð Þ: ð8Þ

As a result, the ignorability assumption enables the naive estimator to

identify both ATE and TT through control of X. Conditioning on X, however,

can be difficult in applied research due to the ‘‘curse of dimensionality.’’

Rosenbaum and Rubin (1983, 1984) show that, when the ignorability

assumption holds true, it is sufficient to condition on the PS as a function

of X. That is to say, relation (5) implies:

Y 1;Y 0
� �

��
k DjPðD ¼ 1jXÞ;

where PðD ¼ 1jXÞ is the PS, the conditional probability of treatment given

all the relevant information in covariates X. In other words, only through the

PS PðD ¼ 1jXÞ may covariates X confound the observed relationship

between treatment D and outcome Y. In empirical settings, however, the

PS first needs to be estimated. Because a fully nonparametric estimation of

the PS would also suffer from the curse of dimensionality, the estimation

is conventionally accomplished by a logit or probit regression. From here

on, we denote by p the PS and by b̂naiveðpÞ the naive estimator of treatment

effect conditional on p. Note that b̂naiveðpÞ here is a function of p but not

necessarily a linear function of p. There are a variety of methods for con-

structing b̂naiveðpÞ, such as matching and stratification (see Morgan and Win-

ship 2007:chap. 4). Subsequently, we introduce a new PS-based method by

modeling counterfactual outcomes as nonparametric functions of the PS,

which we call the ‘‘smoothing-difference method.’’5

The Smoothing-difference PS-based Method

If treatment effects are heterogeneous, there are many possible ways to char-

acterize the heterogeneity (Heckman and Robb 1985; Pearl 2009; Winship

and Morgan 1999; Xie, Brand, and Jann 2012). The basic idea of the

smoothing-difference method is fitting two nonparametric functions for

EðY 1jpÞ and EðY 0jpÞ and taking their differences as estimates of treatment

effects. Specifically, it consists of the following four steps:

1. From observed Y1 and Y0 and estimated PS p̂, fit two univariate func-

tions, f1(p) and f0(p), to approximate E Y 1jpð Þ and EðY 0jpÞ.

Zhou and Xie 11



2. Use f1(p) and f0(p) to predict counterfactual outcomes Y 1
i and Y 0

i for

each individual i in the sample.

3. Obtain the estimated treatment effect di for each individual i by taking

the difference between the predicted counterfactual outcomes.

4. Average estimated di over the entire sample as the estimate of ATE or

over a specific subsample to estimate a corresponding group-level

causal effect. For example, we may estimate TT by averaging di over

those subjects who are actually treated.

Note that in the first step, f1(p) and f0(p) could be fitted via different esti-

mation methods. One simple possibility is to fit two linear models of Y1 and

Y0 on p through OLS. However, this strategy imposes too strong a parametric

assumption concerning the relationship between the outcome variables and

the PS. As we will see in the Results section, empirical data could suggest

a nonmonotone treatment effect of college education as a function of PS.

In this case, imposing a linear structure would mask interesting patterns of

treatment effect heterogeneity, making it impossible to identify population

subgroups that benefit differently from the treatment. Therefore, we

propose to fit two smoothing splines (Hastie, Tibshirani, and Friedman

2008) of Y1 and Y0 on p with the smoothing parameter determined by

generalized cross validation or some other criterion,6 an approach that we

will adopt in our simulation studies in the fourth section as well as the

analysis of NLSY data in the fifth section.

Other PS-based methods include matching, stratification, and weighting,

all of which have been widely used in empirical research. Compared to these

traditional methods, our smoothing-difference method has three distinct

advantages.7 First and foremost, the research interest may lie in the trend

of Df pð Þ, that is, f1 pð Þ � f0 pð Þ; which characterizes how the treatment effect

varies across subjects with different propensities of being treated (Brand and

Xie 2010; Xie et al. 2012; Xie and Wu 2005). Such a pattern may identify

population subgroups that benefit the most, or the least, from treatment, thus

offering meaningful policy implications. For example, many countries are

now rapidly expanding the size of college enrollment. The expansion of

college education would be more effective if it were targeted at those indi-

viduals who are likely to benefit most from attending college. As the pro-

pensity of attending college could be directly estimated from individual

characteristics for every potential college goer, the expected returns to col-

lege could likewise be estimated. Hence, a PS-based cost–benefit analysis

would enable policy makers to fine-tune their strategies in expanding higher

education. Furthermore, the researcher may be interested in the trends of the

12 Sociological Methods & Research 45(1)



outcome as a function of the PS among either treated or untreated subjects,

that is, f0 pð Þ or f1ðpÞ, which could not be extracted from results using match-

ing or weighting methods. As we will illustrate in the Results section, these

trends can enhance our understanding of the social processes that may be

masked by too exclusive a focus on the estimation of causal effects. In

addition, after we pool information through nonparametric regressions

across adjacent cases within either treated or untreated groups, we are able

to derive the estimated treatment effect di for each individual i, before we

calculate any group-level treatment effect through averaging over an appro-

priate subsample.

Decomposition of Ignorability

Equations (4) and (8) reveal that, under the ignorability assumption, control-

ling for observed covariates eliminates both types of selection bias. This sug-

gests that the ignorability assumption should contain two components

corresponding to the two types of bias. Indeed, ignorability expressed as rela-

tion (5) can be rewritten as

Y 0; Y 1 � Y 0
� �

��
k DjX :

This expression reveals the two conditions underlying the ignorability

assumption:

Condition 1:

Y 0

��
k DjX ;

that is, given observed covariates, treatment status is independent of the

baseline outcome.

Condition 2:

Y 1 � Y 0

��
k DjX ;

that is, given observed covariates, treatment status is independent of the

treatment effect. We may call condition 1 the ignorability of type I selection

bias and condition 2 the ignorability of type II selection bias.8 The ignorabil-

ity assumption, in essence, means the ignorability of both type I selection

bias and type II selection bias.

As mentioned in the Ignorability and PS subsection, Rosenbaum and

Rubin (1983) derive the sufficiency of PS under the assumption of complete

ignorability for eliminating confounding bias:

Zhou and Xie 13



IfðY 1; Y 0Þ
��
k DjX ; then Y 1;Y 0

��
k DjPðD ¼ 1jXÞ:

�
Indeed, the proof provided by Rosenbaum and Rubin (1983) implies the

following two propositions:

Proposition 1:

If Y 0

��
k DjX ; then Y 0

��
k DjPðD ¼ 1jXÞ; ð9Þ

Proposition 2:

If Y 1 � Y 0

��
k DjX ; then Y 1 � Y 0

��
k DjPðD ¼ 1jXÞ: ð10Þ

As before, we denote by p the PS PðD ¼ 1jXÞ and by b̂naiveðpÞ the naive

estimator of treatment effect conditional on p. In light of equation (4), the

expectation of b̂naiveðpÞ could be decomposed as:

E b̂naiveðpÞ
� �

¼ ATE pð Þ þ TT pð Þ � ATE pð Þ þ E Y0jD ¼ 1; p
� �

� E Y0jD ¼ 0; p
� �

:
ð11Þ

Equation (11), combined with Propositions 1 and 2, shows that the naive

estimator b̂naiveðpÞ identifies different quantities under different conditions.

First, if condition 1 holds true, type I selection bias thus becomes ignorable,

that is,

E Y0jD ¼ 1; p
� �

¼ E Y0jD ¼ 0; p
� �

:

In this scenario, we have

E b̂naiveðpÞ
� �

¼ TTðpÞ:

Second, if condition 2 holds true, type II selection bias becomes ignorable,

that is,

E Y 1 � Y 0jp;D ¼ 1
� �

¼ E Y 1 � Y 0jp
� �

;

or

TT pð Þ ¼ ATE pð Þ:

In this scenario, we have

14 Sociological Methods & Research 45(1)



E b̂naiveðpÞ
� �

¼ ATEðpÞ þ E Y0jD ¼ 1; p
� �

� E Y0jD ¼ 0; p
� �

:

As a result, we conclude that:

1. If the ignorability of type I selection bias (i.e., condition 1) holds true,

the naive estimator conditional on the PS, b̂naiveðpÞ, confronts only

type II selection bias (treatment-effect heterogeneity bias), that is,

TT pð Þ 6¼ ATEðpÞ. However, if our quantity of interest is TT rather

than ATE, b̂naiveðpÞ is an unbiased estimator.

2. If the ignorability of type II selection bias (i.e., condition 2) holds

true, the naive estimator conditional on the PS, b̂naiveðpÞ, is subject

only to type I selection bias (pretreatment heterogeneity bias), that

is, E Y0jD ¼ 1; p
� �

6¼ EðY0jD ¼ 0; pÞ.9

Marginal-treatment-effect-based Approach

So far, we have seen that PS-based methods are subject to biases when the ignor-

ability assumption is violated. Unfortunately, the ignorability assumption can

never be verified. What recourse is available to a researcher who finds the ignor-

ability assumption implausible in a research setting? In this section, we intro-

duce the MTE approach developed by Heckman and his associates (Heckman

and Vytlacil 1999, 2001, 2005; Heckman et al. 2006a, 2006b). Essentially, these

researchers show that consistent estimates of a wide range of treatment para-

meters (including ATE and TT) can be obtained through different weighted

averages of MTE (Björklund and Moffitt 1987). MTE could be estimated either

parametrically or semiparametrically. In the following, we briefly review this

class of methods, under the heading ‘‘MTE-based approach.’’

The Definition of MTE

It is most convenient to explicate the MTE-based approach with three equa-

tions: outcome equations under two counterfactual regimes (D ¼ 0, D ¼ 1)

and a treatment selection equation. In writing out each of the equations, we

assume separability of the outcome variable into a structural component due

to a linear function of pretreatment covariates and residual components due

to unobserved variables10:

Y 0 ¼ β
0

0X þ E;

Y 1 ¼ β
0

1X þ Eþ Z:

Zhou and Xie 15



Here, corresponding to our decomposition of the two sources of ignorabil-

ity, the error term E captures the unobserved factors that affect only the base-

line outcome, while the error term Z represents the unobserved factors that

affect only units that are treated. Thus, the treatment effect contains both the

structural component (β 00X vs. β 01X ) and the residual component Z. This

setup changes equation (1) so that heterogeneous treatment effect can be

written in a structural form:

dðXÞ ¼ Y 1ðXÞ � Y 0ðXÞ ¼ β1 � β0ð Þ
0
X þ Z:

Note that the treatment effect d depends on covariates X. If we denote by Y

the observed outcome and by D the treatment status, the previous model

could be written in the notation of switching regression models:

Y ¼ 1� Dð ÞY 0 þ DY 1

¼ Y 0 þ D Y 1 � Y 0
� �

¼ β
0

0X þ β1 � β0ð Þ
0
XDþ Eþ ZD:

We further specify a model for selection into treatment. Let D* be the

latent tendency to be treated:

D� ¼ γ
0
Z � V ;

D ¼ 1 D� > 0ð Þ:
ð12Þ

Here, Z is a vector of variables that predict the treatment probability, g is a

vector of coefficients, and V is a latent random variable representing distur-

bance. As in standard regression models, we assume that error terms ðE;Z;VÞ
have zero means and are jointly independent of X and Z. In practice, Z con-

sists of all observed predictors of treatment probability, including all the

components in X as well as some additional variables that predict only the

treatment status D. These additional variables are called instrumental vari-

ables (IVs). The assumption that IVs affect only the treatment status D but

not the outcome variable Y directly is called the exclusion restriction.

We can easily rewrite the treatment selection model, equation (12), in the

following form:

~D� ¼ pðZÞ � UD

D ¼ 1 ~D� > 0
� �

;

where p Zð Þ ¼ P D ¼ 1jZð Þ ¼ FV ðγ
0
ZÞ denotes the PS of being treated given

Z and UD ¼ FV ðVÞ follow a standard uniform distribution on [0,1]. UD
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represents a catch-all unobserved selection component, interpretable as the

level of unobserved resistance to receiving treatment, normalized between

0 and 1. We see that Z enters the treatment selection model only through the

PS p(Z).

Based on the earlier specification of the outcome models and treatment

selection model, the MTE is defined as follows:

MTE x; uDð Þ ¼ E djX ¼ x;UD ¼ uDð Þ

¼ E β1 � β0ð Þ
0
xþ ZjX ¼ x;UD ¼ uD

� �
¼ β1 � β0ð Þ

0
xþ E ZjV ¼ F�1

V uDð Þ
� �

:

ð13Þ

Thus, MTE is essentially the expected treatment effect conditional on

observed covariates X ¼ x as well as the unobserved selection component

UD ¼ uD.

As mentioned previously, Heckman et al. (2006a, 2006b) have shown that

group-level treatment effects such as ATE and TT can be expressed as

weighted averages of MTE(x, uD).11 However, the estimation of MTE(x, uD)

is not straightforward since neither the counterfactual outcome nor the latent

variable uD is observed. Now we briefly sketch the two approaches to estimat-

ing MTE: (1) the parametric method and (2) the semiparametric method.

Parametric and Semiparametric Estimation of MTE

First, we write out the expectation of the observed outcome Y given covari-

ates X ¼ x and the PS p(Z) ¼ p:

E Y jX ¼ x; p Zð Þ ¼ pð Þ ¼ E β
0

0X þ β1 � β0ð Þ
0
XDþ Eþ ZDjX ¼ x; pðZÞ ¼ p

� �
¼ β

0

0xþ β1 � β0ð Þ
0
xpþ E ZjD ¼ 1; p Zð Þ ¼ pð Þp

¼ β
0

0xþ β1 � β0ð Þ
0
xpþ E ZjV < F�1

V ðpÞ
� �

p

¼ β
0

0xþ β1 � β0ð Þ
0
xpþ

Zp

0

E ZjV ¼ F�1
V uDð Þ

� �
duD:

ð14Þ

Incorporating equation (13), the previous expression can be simplified:

E Y jX ¼ x; p Zð Þ ¼ pð Þ ¼ β
0

0xþ
Zp

0

MTE x; uDð ÞduD:
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Differentiating the previous equation with respect to p, we obtain MTE:

MTE x; pð Þ ¼ qEðY jX ¼ x; p Zð Þ ¼ pÞ
qp

: ð15Þ

This expression relates MTE(x, p) to EðY jX ¼ x; p Zð Þ ¼ pÞ and thus

provides a possible route for estimating MTE.

In general, the third term in equation (14),
Rp
0

EðZjV ¼ F�1
V uDð ÞÞduD, is an

unknown function of p. However, if we assume that error terms ðE;Z;VÞ fol-

low a joint Gaussian distribution Nð0;SÞ; E Y jX ¼ x; p Zð Þ ¼ pð Þ would

become a linear combination of x, xp, and fðF�1 pð ÞÞ. Accordingly, the

expression of MTE reduces to:

MTE x; uDð Þ ¼ β1 � β0ð Þ
0
xþ sZVF�1 uDð Þ;

where sZV represents the covariance between Z and V. With this parametric

specification, we can estimate its unknown parameters ðβ1; β0;sZV Þ via

maximum likelihood (ML). This is the parametric MTE-based method,

which is also called the ‘‘control function approach.’’ In fact, given the para-

metric assumption, identification of MTE(x, uD) is theoretically possible

even without the presence of IVs.

In empirical settings, the assumption of joint normality is rarely justifi-

able. This motivated Heckman et al. (2006b) to develop a semiparametric

method to identify MTE(x, p), using equation (15), after first estimating

equation (14) under more flexible assumptions. Their method involves four

steps:12

1. Fit local linear regressions of Y, X, and Xp on p and extract their resi-

duals RY, RX, and RXp.

2. Regress RY on RX and RXp using least squares to estimate the para-

metric component of equation (14), that is, β0 and β1 � β0, and

denote its residuals by R�Y .

3. Regress R�Y on p using standard nonparametric techniques (such as

local polynomial regression) to model the third term in equation

(14) as well as its derivative, that is, E ZjV ¼ F�1
V pð Þ

� �
.

4. Construct MTE(x, uD), expressed in equation (13), using bb1 � bb0

from step 2 and the estimate of E ZjV ¼ F�1
V pð Þ

� �
from step 3.

Since this method capitalizes on the net relationship of

EðY jX ¼ x; p Zð Þ ¼ pÞ with p(Z) after all covariates in X are controlled for,
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the presence of at least a valid IV in Z is indispensable for identification. For

this reason, the semiparametric approach is also called the ‘‘local instrumen-

tal variable’’ (LIV) method. In spite of its flexibility, the LIV method has not

been widely adopted in empirical research, due partly to its high data demand

pertaining to IVs. Although a detailed discussion on the asymptotic variance

of the ML estimator for the parametric MTE method can be found in Heck-

man (1979) and Puhani (2000), statistical properties of the semiparametric

LIV method are not yet familiar to a wider research community.13 This moti-

vates us to evaluate the performance of MTE-based methods through numer-

ical simulation.

Evaluation of Different Methods

Assumptions for Identification

The preceding discussion indicates that different methods require different

assumptions to identify group-level treatment effects. Table 1 summarizes the

assumptions that are required for the PS-based methods, the parametric MTE-

based method, and the semiparametric MTE-based method to identify ATE

and TT. Generally speaking, both the PS- and the MTE-based methods rely

on strong and unverifiable assumptions, the former on ignorability, and the lat-

ter on exclusion restriction or the distribution of error terms. In particular, sev-

eral facts deserve our attention. First, as we note in the second section, the

applicability of PS-based methods is not limited to settings in which complete

ignorability is satisfied. As long as the ignorability of type I selection bias is

satisfied, that is, there is no systematic baseline difference between treated and

untreated units given observed covariates, the PS-based models yield good

estimates of TT, even in the presence of a heterogeneous treatment effect bias.

Second, in contrast to the semiparametric LIV approach, the parametric

MTE-based method requires the assumption of joint normality for error

Table 1. Assumptions for Identification.

Method
Exclusion restriction

(A valid IV)
Distributional form

of error terms
Ignorability
assumption

PS-based methods No No Yes
Parametric MTE No Yes No
Semiparametric MTE (LIV) Yes No No

Note: For the parametric MTE-based method, multivariate normality is conventionally assumed
for error terms. For PS-based methods, when the parameter of interest is TT, only the ignorability
of type I selection bias is necessary. MTEs ¼ marginal treatment effects; LIV ¼ local instrumental
variable; PS¼ propensity score; IV¼ instrumental variable; TT¼ treatment effect of the treated.
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terms. Although in principle the parametric MTE method does not need an

IV for identification, estimation based on the parametric distribution can

be highly imprecise. In practice, availability of IVs that satisfy the exclusion

restriction would greatly improve the precision of the ML estimation.14 We

shall study this facet of the MTE-based methods through numerical simula-

tion in the next subsection.

In comparison with the PS-based methods, the MTE-based methods

require a more explicit micro-level model. From the discussion in the Para-

metric and Semiparametric Estimation of MTE subsection, we see that the

expression of MTE in equation (13) requires the separability of observables

and unobservables in the outcome equations. Also, to estimate the parametric

component of the model, we need to specify a functional form (such as lin-

earity) to characterize the dependence of Y0 and Y1 on X. For the PS-based

methods, however, the assumption of ignorability allows us to model coun-

terfactual outcomes (or treatment effects) along the single dimension of PS.

As this can be conducted in a purely nonparametric manner (as is commonly

done in practice), the PS-based methods do not require an explicit model spe-

cification (except for the PS model).

Ultimately, a choice between the PS- and the MTE-based methods is driven

by the plausibility of the ignorability assumption versus the exclusion restriction

assumption. On one hand, if we suspect violation of ignorability but have valid

IVs, the MTE-based approach is preferable to the PS-based methods. However,

as the exclusion restriction is also a strong and unverifiable assumption, deter-

mining its degree of plausibility requires substantial knowledge in an actual

research setting. On the other hand, if we have no satisfactory instruments that

would satisfy the exclusion restriction but have sufficient information on rele-

vant individual and contextual characteristics so that the ignorability assump-

tion becomes plausible, the PS-based approach is a reasonable choice.

From the previous discussion, the general guideline is quite clear when one

assumption is more plausible than the other. What, however, happens if the

ignorability and the exclusion restriction assumptions are equally plausi-

ble—or equally implausible? In the rest of this section, we examine the perfor-

mances of different methods for the following two scenarios: (1) when both the

ignorability and the exclusion restriction assumptions hold true and (2) when

both the ignorability and the exclusion restriction assumptions break down.

When Both Ignorability and the Exclusion Restriction Hold True

As Table 1 shows, when both the ignorability and the exclusion restriction

assumptions hold true, both the PS- and the MTE-based methods can

20 Sociological Methods & Research 45(1)



correctly identify group-level causal effects (as long as the data-generating

model is correctly specified). In this case, they both provide estimates of

ATE and TT that are asymptotically unbiased. Nonetheless, their statistical

efficiency may differ. Although estimation uncertainty may converge to zero

as sample size goes to infinity, we cannot avoid the limitation of sample size

in empirical research. At present, we know little about the asymptotic var-

iance of the estimators produced by the semiparametric MTE method. It is

therefore of practical relevance for us to explore the statistical efficiency

of the methods being evaluated in this article.

To achieve this end, we utilize simulated data. First, we generate data

through the two potential outcome models and the treatment selection model

described in the previous section:

Y 0 ¼ b00 þ b01X þ E;

Y 1 ¼ b10 þ b11X þ Eþ Z;

D� ¼ g0 þ g1X þ g2Z � V

D ¼ 1ðD� > 0Þ;

with the following parameterization:

β0 ¼ b00; b01½ � ¼ 0; 1½ �; β1 ¼ b10; b11½ � ¼ ½3; 2�;

γ ¼ g0; g1; g2½ � ¼ 0; g1; g2½ �; g2
1 þ g2

2 ¼ 1

X ; Z � N 0; 1ð Þ;X
��
k Z

E;Z;V � N 0; 1ð Þ; E;Z;V mutually independent;

E; Z; V
��
k X ; Z:

Note that in this parameterization, the mutual independence of error terms

E; Z, and V implies the validity of the ignorability assumption. The exclusion

restriction is made true by the joint independence of error terms and Z, which

serves here as an IV. However, the values of g1 and g2 are not fixed. We

manipulate the value of g2 to vary the relative importance of Z in determining

the treatment status. Evidently, when g2 is small, the strength of the IV, Z, is

weak. Meanwhile, since X and Z are distributed as independent standard nor-

mal, we fix gk k at 1 to keep the importance of the observables (X and Z) rela-

tive to the unobservable V roughly constant regardless of the value of g1 or g2.
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In our simulation, we alter the value of g2
2 from 0 to 1 with a step size of

0.125, thus generating nine scenarios with a gradual change in the strength

of the IV. For each of these scenarios, we conduct a Monte Carlo experi-

ment as follows: first, we generate a hypothetical population of size

100,000. Next, we draw 100 samples of size 2,500 from each of these popu-

lations. Then, for each sample, we estimate the causal parameters of ATE

and TT with the three methods that we discussed in previous sections: (1)

the smoothing-difference PS-based method (using smoothing splines), (2)

the parametric MTE-based method, and (3) the semiparametric LIV

method. For the first method, we construct the PS using only X.15 Finally,

for each estimator, we report its standard error as an indicator of statistical

efficiency.

In Figure 1, we plot the trends of the standard error for estimates of ATE

and TT as we vary the explanatory power of the IV in the treatment selection

model. First of all, we see that the semiparametric MTE method (dot-dash

line) generally yields estimates with much larger standard errors than those

from the other two methods. Indeed, when g2 is very small (weak IV), the

standard error of the semiparametric LIV method (around 0.5) is more than

Figure 1. Standard error by strength of instrumental variable (IV) for different
estimators of average treatment effect (ATE; left) and treatment effect of the treated
(TT; right). The standard error for each estimator is calculated from 100 random
samples of size 2,500. Solid line: estimators using the smoothing-difference propensity
score (PS)-based method; dashed line: estimators using the parametric marginal
treatment effects (MTEs) method; dot dash line: estimators using the semiparametric
MTE method.
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five times as large as that of the PS-based method (less than 0.1). More

importantly, Figure 1 shows that the relative strength of IV matters greatly

for the efficiency of the two MTE-based methods. In fact, both the para-

metric and the semiparametric MTE-based estimates undergo a substantial

decline in standard error when the IV becomes a stronger predictor of treat-

ment selection. In summary, two findings emerge from the results. On one

hand, when the IV is relatively weak, the PS-based method outperforms both

MTE-based methods. On the other hand, when treatment selection is domi-

nated by the IV (g2 ¼ 1), the parametric MTE method and the PS-based

method converge in their estimation uncertainty (around 0.1), whereas the

semiparametric MTE approach still suffers from an inefficiency penalty with

a significantly larger standard error (around 0.3) for either ATE or TT.

From this simulation, we observe that when both ignorability and the

exclusion restriction hold true, the PS-based method is generally preferable

to the MTE-based methods, especially when the IV is relatively weak.

Although the parametric MTE-based approach does not require the exclusion

restriction for identification, its estimation efficiency depends heavily on the

availability of a strong IV. The semiparametric LIV estimation depends on

an IV for identification and a strong IV for efficiency. As Figure 1 shows,

when the IV strengthens as a predictor of treatment selection, estimates from

the MTE-based methods become less uncertain.

When Both Ignorability and the Exclusion Restriction Break Down

When the ignorability and the exclusion restriction assumptions are both vio-

lated, neither the PS-based method nor the MTE-based methods produces

theoretically unbiased estimators of ATE and TT. Unfortunately, this is a

likely situation in actual settings of empirical research. This motivates us

to explore potential patterns of under-/overestimation due to the violation

of both ignorability (for PS-based methods) and exclusion restriction (for

MTE-based methods).

In the Decomposition of Ignorability subsection, we showed some impli-

cations of PS-based estimation when ignorability is violated. Rewriting equa-

tion (11), we can express the biases of PS-specific estimators as:

BiasATE pð Þ ¼ E Y 0jD ¼ 1; p
� �

� E Y 0jD ¼ 0; p
� �

þ TT pð Þ � ATE pð Þ;

BiasTT pð Þ ¼ E Y 0jD ¼ 1; p
� �

� EðY 0jD ¼ 0; pÞ:

Therefore, the bias of ATE is an aggregate of type I and type II selection

biases due to unobservables, whereas the bias of TT is due only to
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unobserved type I selection. Neither of them depends on the validity of the

exclusion restriction since IVs play no role in PS-based methods. According

to the previous two expressions, we summarize the directions of BiasATE

and BiasTT and under different scenarios of unobserved selection in Table

2. Hence, if we postulate with some confidence the underlying pattern of

unobserved selection, we may surmise the direction of over-/underestimation

of ATE and TT in PS-based estimation. For example, when there is a sorting

on gain but no selection on level, PS-based methods are likely to overesti-

mate ATE but not TT. If unobserved type I and type II selection biases are

in the opposite direction, the sign of BiasATE, but not of BiasTT, would

be indeterminate.

In contrast, when the exclusion restriction breaks down, it is difficult to

know the direction of the bias for MTE-based estimators, because their ana-

lytical expressions are not readily available. To complicate things, the break-

down of the exclusion restriction may take different forms. The IV may be

correlated, either positively or negatively, with either of the two error terms

E; Zð Þ. In any of these scenarios, the potential biases for ATE and TT may

also be affected by the specific pattern of unobserved selection, that is, the

dependence of V on E and Z. In sum, there is no simple guideline that helps

us decide whether ATE or TT will be overestimated or underestimated by

MTE-based methods when the exclusion restriction is violated.

However, for any particular case, we can still explore its consequences

through numerical simulation. As an illustration, we explore subsequently

Table 2. Biases of ATE and TT due to Unobserved Selection for PS-based
Estimators.

Unobserved selection

BiasATE BiasTTType I Type II

þ þ þ þ
þ 0 þ þ
þ � Uncertain þ
0 þ þ 0
0 0 0 0
0 � � 0
� þ Uncertain �
� 0 � �
� � � �

Note: ATE ¼ average treatment effect; TT ¼ treatment effect of the treated; PS ¼ propensity
score.
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a concrete case that merits detailed investigation in which (1) there is a neg-

ative (unobserved) type I selection and a positive (unobserved) type II selec-

tion and (2) the IV used for estimating MTE is correlated with the treatment

effect Y1 – Y0. We use the same simulation setup as that in the previous sub-

section with the following parameterization:

β0 ¼ b00; b01½ � ¼ 0; 1½ �; β1 ¼ b10; b11½ � ¼ ½3; 2�;

γ ¼ g0; g1; g2½ � ¼ 0; 1; 0:2½ �;

X ; Z � N 0; 1ð Þ;X
��
k Z;

E;Z;V � N 0; 1ð Þ; E
��
k Z; cor E;Vð Þ ¼ 0:5; cor Z;Vð Þ ¼ �0:5;

E;Z;V
��
k X ; E;V

��
k Z:

Note that in this specification, we assume a positive correlation between E
and V (type I selection) but a negative correlation between Z and V (type II

selection). Since V represents the latent resistance to receiving treatment, this

setup is one of ‘‘negative sorting on level’’ and ‘‘positive sorting on gain.’’

This pattern reflects the literature in estimating returns to schooling. Under

the conventional common effects model, the argument for ‘‘ability bias’’

(Griliches 1977) predicted a positive type I selection due to unobserved abil-

ity, that is, more capable individuals tend to acquire more education as well

as to earn more money. However, more recent research considering hetero-

geneous effects has found support for the ‘‘comparative advantage’’ argu-

ment, which implies negative sorting on level as well as positive sorting

on gain (Cunha, Heckman, and Navarro 2005; Willis and Rosen 1979). In

other words, it is predicted that individuals who actually went to college

would be worse off than those who did not if they had not attended college,

although the former group has benefited more from college education than

the latter group would have had they attended college. Patterns of self-

selection have been widely observed in other contexts (Winship and Mare

1992). For example, Smock, Manning, and Gupta (1999: 809) found that

‘‘divorced women would not fare as well economically as married women

had they remained married instead of divorcing,’’ indicating some self-

selection into divorce among women who have less to lose from divorce.

Further, we assume independence between Z and E but not between Z and

Z. The dependence between Z and Z implies that Z is not truly exogenous but

‘‘moderates’’ the treatment effect. In the literature estimating earnings

returns to college education, researchers have used the distance from a
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youth’s home to college as an IV (Cameron and Taber 2004; Card 1995; Cur-

rie and Moretti 2003; Kane and Rouse 1995). However, if returns to college

vary by the distance measure, for example, students living closer to colleges

would benefit more from college than those who live further away, the IV

would be correlated with Z. Here, we vary the correlation between Z and

Z from�0.8 to 0.8 with a step size of 0.1, generating 17 scenarios.16 For each

of these scenarios, we simulate a hypothetical sample of 20,000 and estimate

the causal parameters of ATE and TT using the same three methods as spec-

ified in the previous subsection.17 Finally, we display the results in Figure 2.

The left panel of Figure 2 shows the estimates of ATE, along with its

actual values (solid line). First of all, we can see that the MTE-based esti-

mates of ATE are upwardly biased when cor Z;Zð Þ > 0 and downwardly

biased when cor Z;Zð Þ < 0. In fact, the larger the correlation between Z and

Z, the higher the estimates from the MTE-based methods, especially the

semiparametric LIV estimates (long dash line). For example, when

corðZ;ZÞ is larger than 0.5, the semiparametric LIV estimates are greater

than 6.0, twice as large as its actual value (3.0), whereas the parametric

MTE-based estimates (dot-dash line) are upwardly biased by a smaller

Figure 2. Estimated average treatment effect (ATE; left) and treatment effect of the
treated (TT; right) when exclusion restriction breaks down. This figure shows the
estimates of ATE and TT using different methods as the correlation between Z and Z
changes from �0.8 to 0.8. Solid line: actual values of ATE and TT; dashed line: esti-
mates using the smoothing-difference propensity score (PS)-based method; dot dash
line: estimates using the parametric marginal treatment effects (MTEs) method; long
dash line: estimates using the semiparametric MTE method.

26 Sociological Methods & Research 45(1)



magnitude, at about 4.0. In comparison, the PS-based estimates (dashed line)

show a moderate downward bias in this setup. As expected, the magnitude of

bias for the PS-based estimates does not depend on corðZ;ZÞ, because the

PS-based estimates do not rely on the exclusion restriction for estimation.

The right panel compares estimates of TT. Similar to the case of ATE, the

semiparametric LIV approach yields estimates that are significantly

upwardly biased when cor Z;Zð Þ > 0, and downwardly biased when

cor Z;Zð Þ < 0. Nonetheless, the parametric MTE-based estimates are almost

equal to the true value of TT across the entire range of corðZ;ZÞ. Finally, the

PS-based estimates of TT show a significant underestimation. In fact, we

may infer this last result from an earlier discussion, as Table 2 indicates that

TT is underestimated as long as there is a negative sorting on level.

Overall, the previous simulation reveals that, when there is a negative

sorting on level (type I selection) and positive sorting on gain (type II selec-

tion) due to unobservables, the MTE-based methods, especially the semi-

parametric LIV method, may severely overestimate or underestimate ATE

and TT due to the use of an improper IV. As expected, the same causal para-

meters may be underestimated by the PS-based method. As we will see in the

next section, these results can reasonably explain apparent discrepancies in

an assessment of returns to college.

Empirical Example

To illustrate the three methods we discussed earlier, we applied them to the

data used in the Carneiro et al. (2011) study of returns to college education

using MTE. In the subsections that follow: we (1) describe the data, (2)

demonstrate the use of the smoothing-difference PS-based method, (3) repli-

cate the Carneiro et al. (2011) results using MTE, and (4) compare MTE-

and PS-based estimates of ATE and TT.

Data Description

Following Carneiro et al. (2011), we reanalyze a sample of white males (N¼
1,747) who were 16–22 years old in 1979, drawn from the NLSY 1979.

Treatment is college attendance measured by having attained any postse-

condary education by 1991. By this definition, the treated group consists

of 865 subjects and the control group consists of 882 subjects. The wage vari-

able is measured as an average of deflated (to 1983 constant dollars) non-

missing hourly wages reported between 1989 and 1993. Pretreatment

covariates (X) are urban residence at 14, the Armed Forces Qualification Test

Zhou and Xie 27



(AFQT) score adjusted by years of schooling, mother’s years of schooling,

number of siblings, permanent local log earnings at 17 (county log earnings

averaged between 1973 and 2000), permanent local unemployment rate at

age 17 (state unemployment rate averaged between 1973 and 2000), and

cohort dummies. IVs (Z/X) include (a) the presence of a four-year college

in the county of residence at age 14, (b) local wage in the county of residence

at age 17, (c) local unemployment rate in the state of residence at age 17, and

(d) average tuition in public four-year colleges in the county of residence at

age 17. More detailed description of the data set is provided in Carneiro et al.

(2011).

The Smoothing-difference PS-based Results

Subsequently, we show results from the smoothing-difference PS-based

method. First of all, we estimate the PS of attending college for each subject

in the sample given X using a probit regression model. Table 3 presents the

fitted PS model. We can see that the likelihood of attending college is pre-

dicted positively by corrected AFQT score and negatively by number of

siblings and permanent local log earnings at age 17.

In the next step, we fit two separate nonparametric models regressing the

log hourly wage on the estimated PS, one for the treated group that went to

college and one for the untreated group that did not go to college. Here, we

use smoothing splines with five equivalent degrees of freedom.18 Figure 3

Table 3. Propensity Score Probit Model Predicting College Attendance.

Predictors Coefficient

Urban residence at 14 0.127 (0.084)
Corrected AFQT 0.667*** (0.045)
Corrected AFQT square 0.196*** (0.039)
Mother’s years of schooling �0.110 (0.089)
Mother’s years of schooling square 0.010** (0.004)
Number of siblings �0.090y (0.053)
Number of siblings square 0.002 (0.006)
Permanent local log earnings at 17 �43.9* (17.2)
Permanent local log earnings at 17 square 2.15* (0.84)
Permanent state unemployment rate at 17 0.240 (0.369)
Permanent state unemployment rate at 17 square �0.018 (0.029)
Model w2 684.4 (df ¼ 18)

Note: Numbers in parentheses are standard errors. yp < .1. *p < .05. **p < .01. ***p < .001.
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displays the resulting curves, evaluated over the entire interval (with a small

portion being extrapolated). In the left panel, the dashed line and the dot-dash

line show the expected log hourly wage, respectively, for those who went to

college and for those who did not. Two patterns emerge from this figure.

First, for persons who attended college, the expected wage increases steadily

with the PS. That is, labor market outcomes differ systematically among col-

lege goers, as those with a higher propensity to attend college earn more than

those with a lower propensity. Second, for persons who did not attend col-

lege, expected wage shows a rapid increase at the lower end of PS but flattens

out thereafter. Hence, individuals who are very unlikely to go to college on

the basis of their observed covariates included in the PS are truly disadvan-

taged. If they do not go to college, then they earn much lower wages than

their peers with a higher propensity to attend college (e1.9 ¼ 6.7 at p � 0,

compared to e2.2 ¼ 9.0 at p � 0.2). However, they also stand to gain a lot

from attending college (e2.2 ¼ 9.0 at p � 0), although their wages would

be still substantially lower than those of other college goers with a higher

propensity of attending college (e.g., e2.8 ¼ 16.4 at p � 1.0).

We now turn to the right panel, which depicts estimated heterogeneous treat-

ment effects by PS.19 This curve is obtained directly by differencing the two

functions in the left panel. The nonmonotonic pattern suggests that two groups

of individuals exist who benefit most from college: those most unlikely to go to

Figure 3. The smoothing-difference propensity score (PS)-based method for esti-
mating returns to college. The left panel shows the expected annual wages, respec-
tively, for those who attended college (dashed line) and for those who did not attend
college (dot dash line). The right panel demonstrates the expected return to college
for people with different propensity scores.
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college and those most likely to go to college.20 Thus, college education seems to

be more valuable for persons at either the low end or the high end of the PS than

for those in the middle. Therefore, from these data, we observe a mix of positive

selection and negative selection into college using the PS-based approach.

Next, we use the earlier curve to predict treatment effect di for each indi-

vidual i in the sample. We then average these di’s over the entire sample to

obtain ATE, and over those who actually attended college to estimate TT.

We will discuss these summary results in the next subsection, comparing

them to those produced by the MTE-based methods.

MTE-based Results

We now give up the ignorability assumption and thus the PS approach.

Instead, we use the MTE-based methods, with covariates X and IVs Z/X

specified in the Data Description subsection. We first estimate two sets of

MTEs, one from the parametric model, and the other from the semipara-

metric LIV method. Figure 4 plots these two sets of MTE(x, uD), both eval-

uated at mean values of X. Both the parametric and the semiparametric

estimates of MTE show a declining trend with respect to uD, that is, the unob-

served resistance to attending college. These results show that individuals

with higher returns to college are more likely to go to college (in having

lower uD). Furthermore, the magnitude of the heterogeneity in MTE is sub-

stantial: returns can vary from as high as 80 percent – 100 percent (for low uD

persons who would double their wages from attending college) to as low as

�40 percent (for high uD persons who would lose from attending college).

Using weights provided by Heckman et al. (2006a), we construct standard

treatment parameters from the two sets of estimated MTE. Columns 1–4 of

Table 4 show the final estimates of ATE and TT from different methods, with

bootstrapped standard errors. We observe that MTE-based estimates of ATE

and TT are less precise than those from the PS-based method. The lack of

precision for MTE-based estimates is expected since the IVs we use are rel-

atively weak compared to X in determining treatment selection (see When

Both Ignorability and the Exclusion Restriction Hold True subsection). More

importantly, MTE- and PS-based results differ in magnitude. For ATE, the

differences are not statistically significant, although the semiparametric LIV

method seems to give a larger point estimate than do the other two methods.

For TT, the difference between MTE- and PS-based results is more substan-

tial. Both the parametric and the semiparametric MTE-based methods yield

significantly higher estimates of TT than the PS-based estimate. Specifically,
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we obtain the TT estimate of college returns at 73.6 percent by the semipara-

metric MTE method but only 27.8 percent by the PS-based method.

Discussion on the Discrepancy in Estimates of TT

From Table 4 a natural question arises, why is there such a large discrepancy

between PS-based estimate and MTE-based estimate of TT? In light of our

discussion in When Both Ignorability and the Exclusion Restriction Break

Down subsection, we can offer some speculations. On one hand, there could

be an underestimation by the PS-based method due to the breakdown of the

Table 4. Estimates for Returns to College from NLSY Data.

Causal
parameters

Smoothing-
difference
PS-based
method

MTE-based methods
MTE-based methods

(without tuition)

Parametric Semiparametric Parametric Semiparametric

ATE 0.242
(0.067)

0.264
(0.159)

0.356
(0.174)

0.231
(0.147)

0.277
(0.202)

TT 0.278
(0.093)

0.567
(0.156)

0.736
(0.226)

0.540
(0.144)

0.604
(0.243)

Note: Numbers in parentheses are bootstrapped standard errors with 250 repetitions. MTEs ¼
marginal treatment effects; NLSY ¼ National Longitudinal Survey of Youth.

Figure 4. Estimated marginal treatment effects (averaged over X) from marginal
treatment effects (MTEs)-based methods.
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ignorability assumption. One way to examine the potential pattern of unob-

served selection is from the MTE-based analysis. In fact, the parametric

MTE approach provides the following estimates:

ŝEV ¼ 0:08; ŝZV ¼ �0:24;

where sEV and sZV denote the covariances, respectively, between E and V

and between Z and V. Since V represents a latent resistance to receiving treat-

ment, these estimates suggest a negative sorting on level and a positive sort-

ing on gain. This finding accords well with Willis and Rosen’s (1979) model

of comparative advantage, which argues that college goers would do worse if

they did not go to college but benefit more from college education than per-

sons who do not go to college. If we accept these estimates as evidence for a

negative type I selection and a positive type II selection (due to unobserva-

bles), our earlier discussion around Table 2 would suggest indeed a down-

ward bias for the PS-based estimate of TT. Hence, the discrepancy in TT

estimates between PS- and MTE-based methods could be attributed to a neg-

ative sorting on precollege earnings.

On the other hand, there might be an overestimation by MTE-based meth-

ods due to the violation of the exclusion restriction. The numerical simula-

tion results in the When Both Ignorability and the Exclusion Restriction

Break Down subsection suggest a potentially upward bias when there is a

positive correlation between IV and the treatment effect, that is,

cor Z;Zð Þ > 0 (for g > 0). Unfortunately, such a correlation is empirically

unverifiable, since Z is an unobserved attribute that cannot be individually

recovered from the data. Nonetheless, our results provide good grounds for

questioning the theoretical validity of IV in concrete settings. In our example,

one of the IVs is average tuition in public four-year colleges in the county of

residence. This variable, however, is likely to be correlated with college

quality and thus could influence the returns to college. To test this conjecture,

we excluded average tuition as an IV and reanalyzed the data.21 Columns 5

and 6 of Table 4 show the results for ATE and TT after this modification.

Compared with column 3, the new results by the parametric MTE-based

method are largely unchanged. However, for the semiparametric LIV

approach, the large estimates reported earlier, especially of TT, are markedly

reduced.

In sum, the large discrepancy in TT between PS- and MTE-based esti-

mates may be caused by one of the three underlying causal mechanisms:

(1) the negative sorting on precollege earnings, (2) the use of an improper

IV, or (3) a mixture of the previous two. Because of this uncertainty, neither
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the PS-based method nor the (semiparametric) MTE-based method yields the

true ATE of college education for college goers. Most likely, the truth lies

somewhere in between.

Concluding Remarks

In this study, we have examined certain statistical properties of PS- and

MTE-based methods through an exposition of identification issues, two

simulation analyses, and an empirical application. We showed that the

applicability of PS-based methods is not limited to settings in which com-

plete ignorability is satisfied. In fact, it is useful to decompose ignorability

into two components: (1) ignorability of type I selection bias or baseline dif-

ference between treated and untreated units and (2) ignorability of type II

selection bias or difference in treatment effects between treated and untreated

units. We have shown that as long as the ignorability of type I selection bias

is satisfied, PS-based methods can still identify TT, even in the presence of a

heterogeneous treatment effect bias. Furthermore, when type I selection bias

cannot be ignored, the bias for TT is in the same direction as the type I selec-

tion bias. For example, in the evaluation of returns to college, a negative type

I selection bias is part of the model of ‘‘comparative advantage.’’ An under-

estimation of TT by PS-based methods would occur under this situation.

By comparison, MTE-based methods are robust to different types of vio-

lation of the ignorability assumption. However, they require strong IVs to

achieve statistical efficiency. This is true for both the parametric model and

the semiparametric method. Furthermore, when the exclusion restriction is

violated, MTE-based methods, especially the semiparametric LIV approach,

can be subject to severe overestimation or underestimation of treatment

effects. In practice, the plausibility of the exclusion restriction assumption

cannot be verified but can be evaluated based on substantive knowledge

about the research setting. If substantive concerns suggest the violation of the

exclusion restriction, we could, as we did in Discussion on the Discrepancy

in Estimates of TT subsection, exclude the susceptible IV in the treatment

selection model and reanalyze the data. In addition, we may directly assess

the consequence of a violation of the assumption through sensitivity analyses

(e.g., see Angrist 1990; Angrist, Imbens, and Rubin 1996).

This article has also proposed a PS-based method based on first smoothing

two counterfactual outcomes, which we call the smoothing-difference

method. Compared to traditional matching and stratification methods, the

smoothing-difference method has two distinct advantages. On one hand, it

enables the researcher to examine the nonparametric trends of counterfactual
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outcomes by treatment status across the spectrum of PS. In our empirical

example, we have shown the variations in wages by both the PS of attending

college and the status of college attendance. On the other hand, this method

produces a nonparametric pattern of treatment effect heterogeneity across

individuals with different PSs. Such an observed pattern of heterogeneity

is of interest to social science researchers, although its interpretation is still

ambiguous, depending on the validity of the ignorability assumption (Brand

and Xie 2010; Xie et al. 2012). For example, if the ignorability assumption

holds true, observed results reveal the pattern of heterogeneous treatment

effects. If one accepts only the ignorability of type I selection bias, heteroge-

neous treatment effects along the PS should be interpreted only for those who

are actually treated. If one does not embrace any form of ignorability, the

observed pattern may reveal an underlying selection process sorting out

treated units from untreated units (Xie and Wu 2005).
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Notes

1. The exact meaning of the strength of an IV will be defined in the fourth section.

2. An implicit condition for defining causal effects within the counterfactual frame-

work is the stable-unit-treatment-value assumption (SUTVA), which requires
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that the value of di does not depend on what mechanism is used to assign the

treatment to subject i, or what treatments the other subjects receive (Rubin 1986).

3. There is a guarantee of comparability of the treated group and the control group

in an experiment. In this article, we restrict our attention to observational studies.

4. These two equations constitute a necessary but not sufficient condition for the

ignorability assumption of equation (5). In the literature, they are usually called

the ‘‘weak ignorability assumption’’ or ‘‘conditional mean independence.’’ See

Woodridge (2001).

5. The smoothing-difference method, as an improvement upon the approach

adopted by Brand and Xie (2010), is a by-product of this research. It has also been

incorporated into Xie et al. (2012).

6. Alternative nonparametric regression techniques, such as kernel methods and

local polynomial regression, could also be applied here.

7. Xie et al. (2012) also provide a comparison between this method and other PS-

based methods.

8. The first condition is also called ‘‘unconfoundedness for controls’’ (Imbens 2004).

9. In this case, type I selection bias due to unobservables could be reduced by other

methods such as the conventional IV approach, the fixed-effect model, and

difference-in-difference methods (after conditioning on the PS).

10. The linearity assumption is convenient but not necessary. We can generally

assume Y 0 ¼ m0 Xð Þ þ E and Y 1 ¼ m1 Xð Þ þ Eþ Z for any given functions

m0 Xð Þ and m1ðXÞ.
11. Weights for different parameters of interest are given in Heckman et al. (2006a).

12. For specific issues on the implementation of the semiparametric MTE method,

see Heckman et al. (2006b).

13. An illustrative simulation study for the MTE-based approach is given in Heck-

man et al. (2006b). However, the authors considered only the situation where

variables in Z and variables in X are mutually exclusive and independent, that

is, the treatment selection equation is purely determined by IVs, which is rather

unrealistic.

14. For the parametric model, a detailed discussion on the asymptotic variance of the

maximum likelihood (ML) estimator could be found in Heckman (1979) and

Puhani (2000).

15. For a discussion of whether to include IV in estimating the PS, see Pearl (2009).

16. For the covariance matrix of ðE; Z; V ; ZÞ to be positive definite, the correlation

between Z and Z cannot exceed 0.8.

17. Here, we include Z in estimating the PS, because it is correlated with unobserva-

bles in the outcome equations.

18. Alternative choices of the smoothing parameter do not substantially alter our

results.
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19. For a discussion of why such heterogeneity is of special interest, see Xie et al.

(2012).

20. The second part of this finding, that is, a larger return at the very high level of the

PS, is inconsistent with Brand and Xie’s (2010) main conclusion. Future research

is needed to explain this inconsistency.

21. We also reanalyzed the data after excluding the presence of college, another con-

troversial IV, from the set of instruments. The corresponding estimates of ATE

and TT, however, do not change much.
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