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Abstract

An essential feature common to all empirical social research is variability

across units of analysis. Individuals differ not only in background character-

istics but also in how they respond to a particular treatment, intervention, or

stimulation. Moreover, individuals may self-select into treatment on the basis

of anticipated treatment effects. To study heterogeneous treatment effects in

the presence of self-selection, Heckman and Vytlacil developed a structural

approach that builds on the marginal treatment effect (MTE). In this article,

we extend the MTE-based approach through a redefinition of MTE.

Specifically, we redefine MTE as the expected treatment effect conditional

on the propensity score (rather than all observed covariates) as well as a

latent variable representing unobserved resistance to treatment. As with the

original MTE, the new MTE also can be used as a building block for evalu-

ating standard causal estimands. However, the weights associated with the

new MTE are simpler, more intuitive, and easier to compute. Moreover, the

new MTE is a bivariate function and thus is easier to visualize than the
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original MTE. Finally, the redefined MTE immediately reveals treatment-

effect heterogeneity among individuals who are at the margin of treatment.

As a result, it can be used to evaluate a wide range of policy changes with

little analytical twist and design policy interventions that optimize the mar-

ginal benefits of treatment. We illustrate the proposed method by estimating

heterogeneous economic returns to college with National Longitudinal Study

of Youth 1979 data.
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1. INTRODUCTION

An essential feature common to all empirical social research is variabil-

ity across units of analysis. Individuals differ not only in background

characteristics but also in how they respond to a particular treatment,

intervention, or stimulation. In the language of causal inference, the sec-

ond type of variability is called treatment-effect heterogeneity. Due to

the ubiquity of treatment-effect heterogeneity, all statistical methods

designed for drawing causal inferences can identify causal effects only

at an aggregate level; they overlook within-group, individual-level het-

erogeneity (Holland 1986; Xie 2013). Moreover, when treatment effects

vary systematically by treatment status, the average difference in out-

come between the treated and untreated units is a biased estimate of the

average treatment effect in the population (Winship and Morgan 1999).

Depending on data and assumptions about how individuals select into

treatment, three major approaches have been proposed to studying het-

erogeneous treatment effects. First, we simply can include interaction

terms between treatment status and a set of effect modifiers in a stan-

dard regression model. A drawback of this approach is that the results

may be sensitive to the functional form specifying how treatment and

covariates jointly influence the outcome of interest. Fortunately, recent

developments in nonparametric modeling have allowed the idea to be

implemented without strong functional form restrictions (e.g., Hill

2011). Second, recent sociological studies have focused on how treat-

ment effect varies by the propensity score, that is, the probability of

treatment given a set of observed covariates (e.g., Brand and Xie 2010;

Xie, Brand, and Jann 2012). The methodological rationale for this
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approach is that under the assumption of ignorability, the interaction

between treatment status and the propensity score captures all the

treatment-effect heterogeneity that is consequential for selection bias

(Rosenbaum and Rubin 1983). Treatment-effect heterogeneity along the

propensity score also has profound policy implications. For instance, if

the benefits of a job training program are greater among individuals

who are more likely to enroll in the program, expanding the size of the

program may reduce its average effectiveness.

The aforementioned two approaches for studying heterogeneous

treatment effects both rely on the assumption of ignorability, that is,

after controlling for a set of observed confounders, treatment status is

independent of potential outcomes. This assumption is strong, unverifi-

able, and unlikely to be true in most observational studies. Two types of

unobserved selection may invalidate the ignorability assumption. On the

one hand, if treatment status is correlated with some fixed unobserved

characteristics such that treated units would have different outcomes

from untreated units even without treatment, traditional regression and

matching methods would lead to biased estimates of average causal

effects. This bias is usually called pretreatment heterogeneity bias or

Type I selection bias (Xie et et al. 2012). As Breen, Choi, and Holm

(2015) show, this type of selection easily could contaminate estimates

of heterogeneous treatment effects by observed covariates or the pro-

pensity score. A variety of statistical and econometric methods, such as

instrumental variables (IV), fixed-effects models, and regression discon-

tinuity (RD) designs, have been developed to address pretreatment het-

erogeneity bias.

The second type of unobserved selection arises when treatment status

is correlated with treatment effect in a way that is not captured by

observed covariates. This is likely when individuals (or their agents)

possess more knowledge than the researcher about their individual-

specific gains (or losses) from treatment and act on it (Bjorklund and

Moffitt 1987; Heckman and Vytlacil 2005; Roy 1951). The bias associ-

ated with this type of selection has been termed treatment-effect hetero-

geneity bias or Type II selection bias (Xie et al. 2012). For example,

research considering heterogeneous returns to schooling has argued that

college education is selective because it disproportionately attracts

young persons who would gain more from attending college (e.g.,

Carneiro, Heckman, and Vytlacil 2011; Moffitt 2008; Willis and Rosen

1979). Similar patterns of self-selection have been observed in a variety
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of contexts, such as migration (Borjas 1987), secondary-school tracking

(Gamoran and Mare 1989), career choice (Sakamoto and Chen 1991),

and marriage dissolution (Smock, Manning, and Gupta 1999).

The third approach, developed by Heckman and Vytlacil (1999,

2001a, 2005, 2007b), accommodates both types of unobserved selection

through the use of a latent index model for treatment assignment. Under

this model, all the treatment-effect heterogeneity relevant for selection

bias is captured in the marginal treatment effect (MTE), a function

defined as the conditional expectation of treatment effect given observed

covariates and a latent variable representing unobserved, individual-

specific resistance to treatment. This approach has been called the MTE-

based approach (Zhou and Xie 2016). As Heckman, Urzua, and

Vytlacil (2006) show, a wide range of causal estimands, such as the

average treatment effect (ATE) and the treatment effect of the treated

(TT), can be expressed as weighted averages of MTE. Moreover, MTE

can be used to evaluate average treatment effects among individuals at

the margin of indifference to treatment, thus allowing researchers to

assess the efficacy of marginal policy changes (Carneiro et al. 2010).

For example, using data from the 1979 National Longitudinal Survey of

Youth (NLSY79), Carneiro and colleagues (2011) found that if a policy

change expanded each individual’s probability of attending college by

the same proportion, the estimated return to one year of college educa-

tion among marginal entrants to college would be only 1.5 percent, far

lower than the estimated population average of 6.7 percent.

In the MTE framework, the latent index model ensures that all unob-

served determinants of treatment status are summarized by a single

latent variable and that the variation of treatment effect by this latent

variable captures all the treatment-effect heterogeneity that may cause

selection bias. Our basic intuition is that under this model, treatment-

effect heterogeneity that is consequential for selection bias occurs only

along two dimensions: (1) the observed probability of treatment (i.e.,

the propensity score) and (2) the latent variable for unobserved resis-

tance to treatment. In other words, after unobserved selection is factored

in through the latent variable, the propensity score is the only dimension

along which treatment effect may be correlated with treatment status.

Therefore, to identify population-level and subpopulation-level causal

effects such as ATE and TT, it would be sufficient to model treatment

effect as a bivariate function of the propensity score and the latent vari-

able. In this article, we show that such a bivariate function is not only
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analytically sufficient but also essential to the evaluation of policy

effects.

Specifically, we redefine MTE as the expected treatment effect condi-

tional on the propensity score (rather than the entire vector of observed

covariates) and the latent variable representing unobserved resistance to

treatment. This redefinition offers a novel perspective to interpret and

analyze MTE that supplements the current approach. First, although pro-

jected onto a unidimensional summary of covariates, the redefined MTE

is sufficient to capture all the treatment-effect heterogeneity that is con-

sequential for selection bias. Thus, as with the original MTE, it can be

used as a building block for constructing standard causal estimands such

as ATE and TT. The weights associated with the new MTE, however,

are simpler, more intuitive, and easier to compute. Second, by discard-

ing treatment effect variation that is orthogonal to the two-dimensional

space spanned by the propensity score and the latent variable, the rede-

fined MTE is a bivariate function, thus easier to visualize than the origi-

nal MTE. Finally, and perhaps most importantly, the redefined MTE

immediately reveals treatment-effect heterogeneity among individuals

who are at the margin of treatment. It can thus be used to evaluate a

wide range of policy effects with little analytical twist and design policy

interventions that optimize the marginal benefits of treatment. To facili-

tate practice, we also provide an R package, localIV, for estimating the

redefined MTE as well as the original MTE via local instrumental vari-

ables (Zhou 2019), which is available from the Comprehensive R

Archive Network (CRAN).

This article is clearly not the first to characterize the problem of

selection bias using the propensity score. Since the seminal work of

Rosenbaum and Rubin (1983), propensity score–based methods, such as

matching, weighting, and regression adjustment, have been a mainstay

strategy for drawing causal inferences in the social sciences. In a series

of articles, Heckman and colleagues established the key roles of the

propensity score in a variety of econometric methods, including control

functions, instrumental variables, and the MTE approach (Heckman

2010; Heckman and Hotz 1989; Heckman and Navarro-Lozano 2004;

Heckman and Robb 1986).1 In the MTE approach, for example, incre-

mental changes in the propensity score serve as “local instrumental

variables” that identify the MTE at various values of the unobserved

resistance to treatment. Moreover, the weights with which MTE can be

aggregated up to standard causal estimands depend solely on the
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conditional distribution of the propensity score given covariates. We

show that the propensity score offers not only a tool for identification

but also a perspective from which we can better summarize, interpret,

and analyze treatment-effect heterogeneity due to both observed and

unobserved characteristics.

The rest of this article is organized as follows. Section 2 reviews the

MTE-based approach for studying heterogeneous treatment effects.

Specifically, we discuss the generalized Roy model for treatment selec-

tion, the definition and properties of MTE, and the estimation of MTE

and related weights. Section 3 presents our new approach that builds on

the redefinition of MTE. The redefined MTE enables us to directly

examine the variation of ATE, TT, and policy-relevant causal effects

across individuals with different values of the propensity score. In this

framework, designing a policy intervention boils down to weighting

individuals with different propensities of treatment. Section 4 illustrates

our new approach by estimating heterogeneous economic returns to col-

lege with NLSY79 data. Section 5 discusses our conclusions.

2. THE MTE-BASED APPROACH: A REVIEW

2.1. The Generalized Roy Model

The MTE approach builds on the generalized Roy model for discrete

choices (Heckman and Vytlacil 2007a; Roy 1951). Consider two poten-

tial outcomes, Y1 and Y0, a binary indicator D for treatment status, and

a vector of pretreatment covariates X . Y1 denotes the potential outcome

if the individual were treated (D = 1), and Y0 denotes the potential out-

come if the individual were not treated (D = 0). We specify the outcome

equations as

Y0 = m0 Xð Þ+ E ð1Þ

Y1 = m1(X ) + E+ h; ð2Þ

where m0(X ) =E½Y0jX �, m1(X ) =E½Y1jX �, the error term E captures all

unobserved factors that affect the baseline outcome (Y0), and the error

term h captures all unobserved factors that affect the treatment effect

(Y1 � Y0). In general, the error terms E and h need not be statistically

independent of X , although they have zero conditional means by con-

struction. The observed outcome Y can be linked to the potential out-

comes through the switching regression model (Quandt 1958, 1972):
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Y = (1� D)Y0 + DY1

= m0(X ) + (m1(X )� m0(X ))D + E+ hD:
ð3Þ

Treatment assignment is represented by a latent index model. Let ID

be a latent tendency for treatment, which depends on both observed (Z)

and unobserved (V ) factors:

ID = mD(Z)� V ð4Þ

D = I(ID.0), ð5Þ

where mD(Z) is an unspecified function and V is a latent random vari-

able representing unobserved, individual-specific resistance to treat-

ment, assumed to be continuous with a strictly increasing distribution

function. The Z vector includes all the components of X , but it also

includes some instrumental variables (IV) that affect only the treatment

status D. The key assumptions associated with Equations 1, 2, 4, and 5

are

Assumption 1. (E, h, V ) are statistically independent of Z given X

(independence).

Assumption 2. mD(Z) is a nontrivial function of Z given X (rank

condition).

The latent index model characterized by Equations 4 and 5 combined

with Assumptions 1 and 2 is equivalent to the Imbens-Angrist (Imbens

and Angrist 1994) assumptions of independence and monotonicity for

the interpretation of IV estimands as local average treatment effects

(LATE; Vytlacil 2002). Given Assumptions 1 and 2, the latent resis-

tance V is allowed to be correlated with E and h in a general way. For

example, research considering heterogeneous returns to schooling has

argued that individuals may self-select into college on the basis of their

anticipated gains. In this case, V will be negatively correlated with h

because individuals with higher values of h tend to have lower levels of

unobserved resistance U .2

2.2. Marginal Treatment Effects

To define the MTE, it is best to rewrite the treatment assignment

Equations 4 and 5 as
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D = I(FV jX (mD(Z))� FV jX (V ).0)

= I(P(Z)� U.0),
ð6Þ

where FV jX (�) is the cumulative distribution function of V given X and

P(Z) = Pr(D = 1jZ) = FV jX (mD(Z)) denotes the propensity score given Z.

U = FV jX (V ) is the quantile of V given X , which by definition follows a

standard uniform distribution. From Equation 6, we can see that Z

affects treatment status only through the propensity score P(Z).3

The MTE is defined as the expected treatment effect conditional on

pretreatment covariates X = x and the normalized latent variable U = u:

MTE(x, u) =E½Y1 � Y0jX = x, U = u�
=E½m1(X )� m0(X ) + hjX = x, U = u�
= m1(x)� m0(x) +E½hjX = x, U = u�:

ð7Þ

Because U is the quantile of V , the variation of MTE(x, u) over values

of u reflects how treatment effect varies with different quantiles of the

unobserved resistance to treatment. Alternatively, MTE(x, u) can be

interpreted as the average treatment effect among individuals who are

indifferent between treatment or not with covariates X = x and the pro-

pensity score P(Z) = u.

A wide range of causal estimands, such as ATE and TT, can be

expressed as weighted averages of MTE(x, u) (Heckman et al. 2006). To

obtain population-level causal effects, MTE(x, u) needs to be integrated

twice, first over u given X = x and then over x. The weights for integrat-

ing over u are shown in Table 1. Note that these weights are conditional

on X = x. To estimate overall ATE, TT, and treatment effect of the

Table 1. Weights for Constructing ATE(x), TT(x), and TUT(x) from MTE(x, u)

Quantities of Interest Weight

ATE(x) hATE(x, u) = 1
TT(x)

hTT(x, u) =

Ð 1

u
fP(Z)jX = x(p)dp

E(P(Z)jX = x)

TUT(x)
hTUT(x, u) =

Ð u

0
fP(Z)jX = x(p)dp

1�E(P(Z)jX = x)

Note: ATE = average treatment effect; TT = treatment effect of the treated; TUT = treatment

effect of the untreated; MTE = marginal treatment effect.
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untreated (TUT), we need to further integrate estimates of ATE(x),

TT(x), and TUT(x) against appropriate marginal distributions of X .

The estimation of MTE(x, u), however, is not straightforward because

neither the counterfactual outcome nor the latent variable U is observed.

Moreover, the estimation of weights can be practically challenging

(except for the ATE case) because it involves estimating the conditional

density of P(Z) given X and the latter is usually a high-dimensional vec-

tor. We turn to these estimation issues now.

2.3. Estimation of MTE and Weights in Practice

Given Assumptions 1 and 2, MTE(x, u) can be nonparametrically identi-

fied using the method of local instrumental variables (LIV).4 To see

how it works, let us first write out the expectation of the observed out-

come Y given the covariates X = x and the propensity score P(Z) = p.

According to Equation 3, we have

E½Y jX = x, P(Z) = p�=E½m0(X ) + (m1(X )� m0(X ))D + E+ hDjX = x, P(Z) = p�
= m0(x) + (m1(x)� m0(x))p +E½hjD = 1, X = x, P(Z) = p�p

= m0(x) + (m1(x)� m0(x))p +

ðp

0

E½hjX = x, U = u�du:

ð8Þ

Taking the partial derivative of Equation 8 with respect to p, we have

∂E½Y jX = x, P(Z) = p�
∂p

= m1(x)� m0(x) +E½hjX = x, U = p�

= MTE(x, p):

Because E(Y jX = x, P(Z) = p) is a function of observed (or estimable)

quantities, the previous equation means MTE(x, u) is identified as long

as u falls within supp(P(Z)jX ), the conditional support of P(Z) given

X = x. In other words, MTE(x, u) is nonparametrically identified over

supp(X , P(Z)), the support of the joint distribution of X and P(Z).

In practice, however, it is difficult to condition on X nonparametri-

cally, especially when X is high-dimensional. Therefore, in most empiri-

cal work using LIV, it is assumed that (X , Z) is jointly independent of

(E, h, V ) (e.g., Carneiro et al. 2011; Carneiro and Lee 2009; Maestas,

Mullen, and Strand 2013). Under this assumption, the MTE is additively

separable in x and u:
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MTE(x, u) = m1(x)� m0(x) +E½hjX = x, U = u�
= m1(x)� m0(x) +E½hjU = u�:

ð9Þ

The additive separability not only simplifies estimation, but it allows

MTE(x, u) to be identified over supp(X )3supp(P(Z)) (instead of

supp(X , P(Z))). The previous equation also suggests a necessary and

sufficient condition for the MTE to be additively separable:

Assumption 3. E½hjX = x, U = u� does not depend on x (additive

separability).

This assumption is implied by (but does not imply) the full indepen-

dence between (X , Z) and (E, h, V ) (for a similar discussion, see Brinch,

Mogstad, and Wiswall 2017).

In most applied work, the conditional means of Y0 and Y1 given X

are further specified as linear in parameters: m0(X ) = bT
0 X and

m1(X ) = bT
1 X . Given the linear specification and Assumptions 1, 2, and

3, E½Y jX = x, P(Z) = p� can be written as

E½Y jX = x, P(Z) = p�= bT
0 x + (b1 � b0)T xp +

ðp

0

E½hjU = u�du|fflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflffl}
K(p)

, ð10Þ

where K(p) is an unknown function that can be estimated either parame-

trically or nonparametrically.5

First, in the special case where the error terms (E, h, V ) are assumed

to be jointly normal with zero means and an unknown covariance matrix

S, the generalized Roy model characterized by Equations 1, 2, 4, and 5

is fully parameterized, and the unknown parameters (b1, b0, g, S) can be

jointly estimated via maximum likelihood.6 This model specification has

a long history in econometrics and is usually called the “normal switch-

ing regression model” (Heckman 1978; for a review, see Winship and

Mare 1992). With the joint normality assumption, Equation 9 reduces to

MTE(x, u) = (b1 � b0)T x +
shV

sV

F�1(u), ð11Þ

where shV is the covariance between h and V , sV is the standard devia-

tion of V , and F�1(�) denotes the inverse of the standard normal distri-

bution function.7 By plugging in the maximum likelihood estimates
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(MLE) of (b1, b0, shV , sV ), we obtain an estimate of MTE(x, u) for any

combination of x and u.

The joint normality of error terms is a strong and restrictive assump-

tion. When errors are not normally distributed, imposition of normality

may lead to substantial bias in estimates of the model parameters

(Arabmazar and Schmidt 1982). To avoid this problem, Heckman and

colleagues (2006) proposed to fit Equation 10 semiparametrically using

a double residual procedure (Robinson 1988). In this case, the estima-

tion of MTE(x, u) can be summarized in four steps:

1. Estimate the propensity scores using a standard logit/probit model,

denote them as P̂.8

2. Fit local linear regressions of Y , X , and X P̂ on P̂ and extract their resi-

duals eY , eX , and eXP̂.

3. Fit a simple linear regression of eY on eX and eXP̂ (with no intercepts)

to estimate the parametric part of Equation 10, that is, (b0, b1 � b0),

and store the remaining variation of Y as e�Y = Y � b̂T
0 X � (b̂1�

b̂0)T X P̂.

4. Fit a local quadratic regression (Fan and Gijbels 1996) of e�Y on P̂ to

estimate K(p) and its derivative K 0(p).

The MTE is then estimated as

dMTE(x, u) = (b̂1 � b̂0)T x + K̂ 0(u): ð12Þ

With estimates of MTE(x, u), we still need appropriate weights to

estimate aggregate causal effects such as ATE and TT. As shown in

Table 1, most weights involve the conditional density of P(Z) given X .

Because the latter is often a high-dimensional vector, direct estimation

of these weights is challenging. In their empirical application, Carneiro

and colleagues (2011) conditioned on an index of X , (b̂1 � b̂0)T X ,

instead of X . In other words, they used f ½P̂j(b̂1 � b̂0)T X � as an approxi-

mation to f ½P(Z)jX �. To estimate the former, we can first estimate the

bivariate density f ½P̂, (b̂1 � b̂0)T X � using kernel methods and then

divide the estimated bivariate density by the marginal density

f ½(b̂1 � b̂0)T X �. As we will see, these ad hoc methods for estimating

weights are no longer needed with our new approach.
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3. A PROPENSITY SCORE PERSPECTIVE

3.1. A Redefinition of MTE

Under the generalized Roy model, a single latent variable U not only

summarizes all unobserved determinants of treatment status but also

captures all the treatment-effect heterogeneity by unobserved character-

istics that may cause selection bias. In fact, the latent index structure

implies that all the treatment-effect heterogeneity that is consequential

for selection bias exists only along two dimensions: (1) the propensity

score P(Z) and (2) the latent variable U representing unobserved resis-

tance to treatment. This is directly reflected in Equation 6: a person is

treated if and only if his or her propensity score exceeds his or her (rea-

lized) latent resistance u. Therefore, given both P(Z) and U , treatment

status D is fixed (either 0 or 1) and thus independent of treatment effect:

Y1 � Y0?DjP(Z), U :

This expression resembles the Rosenbaum and Rubin (1983) result on

the sufficiency of the propensity score except that we now condition on

U in addition to P(Z). Thus, to characterize selection bias, it would be

sufficient to model treatment effect as a bivariate function of the propen-

sity score (rather than the entire vector of covariates) and the latent vari-

able U . We redefine MTE as the expected treatment effect given P(Z)

and U :

gMTE(p, u) ¼D E½Y1 � Y0jP(Z) = p, U = u�: ð13Þ

Compared with the original MTE, gMTE(p, u) has two immediate advan-

tages. First, because it conditions on the propensity score P(Z) rather

than the whole vector of X , it captures all the treatment-effect heteroge-

neity that is relevant for selection bias in a more parsimonious way.

Second, by discarding treatment effect variation that is orthogonal to the

two-dimensional space spanned by P(Z) and U , gMTE(p, u) is a bivariate

function and thus easier to visualize than MTE(x, u).

As with MTE(x, u), gMTE(p, u) also can be used as a building block

for constructing standard causal estimands such as ATE and TT.

However, compared with the weights on MTE(x, u), the weights ongMTE(p, u) are simpler, more intuitive, and easier to compute. The

weights for ATE, TT, and TUT are shown in the first three rows of

Table 2. To construct ATE(p), we simply integrate gMTE(p, u) against
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the marginal distribution of U—a standard uniform distribution. To

construct TT(p), we integrate gMTE(p, u) against the truncated distribu-

tion of U given U\ p. Likewise, to construct TUT(p), we integrategMTE(p, u) against the truncated distribution of U given U � p. To

obtain population-level ATE, TT, and TUT, we further integrate

ATE(p), TT(p), and TUT(p) against appropriate marginal distributions

of P(Z). For example, to construct TT, we integrate TT(p) against the

marginal distribution of the propensity score among treated units.

In practice, gMTE(p, u) can be estimated as a byproduct of MTE(x, u).

Under Assumptions 1, 2, and 3,9 gMTE(p, u) can be written as

gMTE(p, u) =E½m1(X )� m0(X )jP(Z) = p�+E½hjU = u�: ð14Þ

A proof of Equation 14 is given in Appendix A. Comparing Equation 14

with Equation 9, we see that the only difference between the original MTE

and gMTE(p, u) is that the first component of gMTE(p, u) is now the condi-

tional expectation of m1(X )� m0(X ) given the propensity score rather than

m1(X )� m0(X ). Therefore, to estimate gMTE(p, u), we need only one more

step after implementing the procedures described in Section 2.3: fit a non-

parametric curve of (b̂1 � b̂1)T X with respect to P̂ (e.g., using a local lin-

ear regression) and combine it with existing estimates of K 0(u).

3.2. Policy-Relevant Causal Effects

The redefined MTE can be used not only to construct traditional causal

estimands but also, in the context of program evaluation, to draw

Table 2. Weights for Constructing ATE, TT, TUT, PRTE, and MPRTE fromgMTE(p, u)

Quantities of Interest Weight

ATE(p) hATE(p, u) = 1
TT(p) hTT(p, u) = 1(u , p)

p

TUT(p) hTUT(p, u) = 1(u� p)
1�p

PRTE(p, l(p)) hPRTE(p, u) = 1(p� u , p + l(p))
l(p)

MPRTE(p) hMPRTE(p, u) = d(u� p)

Note: ATE = average treatment effect; TT = treatment effect of the treated; TUT = treatment

effect of the untreated; PRTE = policy-relevant treatment effect; MPRTE = marginal policy-

relevant treatment effect. d( � ) is the Dirac delta function.

362 Zhou and Xie



implications for how the program should be revised in the future. To

predict the impact of an expansion (or contraction) in program partici-

pation, one needs to examine treatment effects for individuals who

would be affected by such an expansion (or contraction). To formalize

this idea, Heckman and Vytlacil (2001b, 2005) define the policy-

relevant treatment effect (PRTE) as the mean effect of moving from a

baseline policy to an alternative policy per net person shifted into treat-

ment, that is,

PRTE ¼D E(Y jAlternative Policy)� E(Y jBaseline Policy)

E(DjAlternative Policy)� E(DjBaseline Policy)
:

They further show that under the generalized Roy model, the PRTE

depends on a policy change only through its effects on the distribution

of the propensity score P(Z). Specifically, conditional on X = x, the

PRTE can be written as a weighted average of MTE(x, u), where the

weights depend only on the distribution of P(Z) before and after the

policy change. Within this framework, Carneiro and colleagues (2010)

further define the marginal policy-relevant treatment effect (MPRTE)

as a directional limit of the PRTE as the alternative policy converges to

the baseline policy. Denoting by F(�), the cumulative distribution func-

tion of P(Z), they consider a set of alternative policies indexed by a sca-

lar a, fFa: a 2 R}, such that F0 corresponds to the baseline policy.

The MPRTE is defined as

MPRTE = lim
a!0

PRTE(Fa):

We follow their approach to analyzing policy effects but without condi-

tioning on X . Whereas Carneiro and colleagues (2010) assume that the

effects of all policy changes are through shifts in the conditional distri-

bution of P(Z) given X , we focus on policy changes that shift the mar-

ginal distribution of P(Z) directly. In other words, we consider policy

interventions that incorporate individual-level treatment-effect heteroge-

neity by values of P(Z), whether their differences in P(Z) are induced

by their baseline characteristics X or the instrumental variables ZnX . In

Section 3.5, we compare these two approaches in more detail and dis-

cuss some major advantages of our new approach.

Specifically, let us consider a class of policy changes under which

the ith individual’s propensity of treatment is boosted by l(pi) (in a way

that does not change his or her treatment effect), where pi denotes the
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individual’s propensity score P(zi) and l(�) is a positive, real-valued

function such that p + l(p) � 1 for all p 2 ½0, 1). The policy change thus

nudges everyone in the same direction, and two persons with the same

baseline probability of treatment share an inducement of the same size.

For such a policy change, the PRTE given P(Z) = p\1 and l(p) becomes

PRTE(p, l(p)) =E½Y1 � Y0jp(Z) = p, p � U\p + l(p)�:

As with standard causal estimands, PRTE(p, l(p)) can be expressed as a

weighted average of gMTE(p, u):

PRTE(p, l(p)) =
1

l(p)

ðp + l(p)

p

gMTE(p, u)du:

Here, the weight on u is constant (i.e., 1=l(p)) within the interval of

½p, p + l(p)) and zero elsewhere.

To examine the effects of marginal policy changes, let us consider a

sequence of policy changes indexed by a real-valued scalar a. Given

P(Z) = p, we define the MPRTE as the limit of PRTE(p, al(p)) as a

approaches zero:

MPRTE(p) = lim
a!0

PRTE(p, al(p))

=E(Y1 � Y0jp(Z) = p, U = p)

= gMTE(p, p):

ð15Þ

Hence, we have established a direct link between MPRTE(p) andgMTE(p, u): At each level of the propensity score, the MPRTE is simply

the gMTE at the margin where u = p. As shown in the last row of Table

2, MPRTE(p) can also be expressed as a weighted average ofgMTE(p, u) using the Dirac delta function.

Figure 1 illustrates the relationships between ATE, TT, TUT, and

MPRTE. Panel a shows a shaded gray plot of gMTE(p, u) for heteroge-

neous treatment effects in a hypothetical setup. In this plot, both the pro-

pensity score p and the latent resistance u (both ranging from 0 to 1) are

divided into 10 equally spaced strata, yielding 100 grids, and a darker

grid indicates a higher treatment effect. The advantage of such a shaded

gray plot is that we can use subsets of the 100 grids to represent mean-

ingful subpopulations. For example, we present the grids for treated

units in Panel b, untreated units in Panel c, and marginal units in Panel
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d. Thus, evaluating ATE, TT, TUT, and MPRTE simply means taking

weighted averages of gMTE(p, u) over the corresponding subsets of

grids.

3.3. Treatment-Effect Heterogeneity among Marginal Entrants

For policymakers, a key question of interest would be how MPRTE(p)

varies with the propensity score p. From Equations 14 and 15, we see

that MPRTE(p) consists of two components:

MPRTE(p) = E½m1(X )� m0(X )jP(Z) = p�+ E(hjU = p): ð16Þ

Figure 1. Demonstration of treatment-effect heterogeneity by propensity
score P(Z) and latent variable U .
Note: A darker color means a higher treatment effect.
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The first component reflects how treatment effect varies by the propen-

sity score, and the second component reflects how treatment effect var-

ies by the latent resistance U . Among marginal entrants, P(Z) is equal to

U so that these two components fall on the same dimension.

To see how the two components combine to shape MPRTE(p), let us

revisit the classic example on economic returns to college. In the labor

economics literature, researchers often have found a negative associa-

tion between h and U , suggesting a pattern of positive selection, that is,

individuals who benefit more from college are more motivated than

their peers to attend college in the first place (e.g., Blundell, Dearden,

and Sianesi 2005; Carneiro et al. 2011; Heckman, Humphries, and

Veramendi 2018; Moffitt 2008; Willis and Rosen 1979). In this case,

the second component of Equation 16 would be a decreasing function

of p. On the other hand, the literature has not paid much attention to the

first component, that is, whether individuals who by observed character-

istics are more likely to attend college also benefit more from college.

A number of observational studies suggest that nontraditional students,

such as racial and ethnic minorities or students from less educated fami-

lies, experience higher returns to college than do traditional students,

although interpretation of such findings remains controversial due to

potential unobserved selection biases (e.g., Attewell and Lavin 2007;

Bowen and Bok 1998; Dale and Krueger 2011; Maurin and McNally

2008; for a review, see Hout 2012).10 However, if the downward slope

in the second component were sufficiently strong, MPRTE(p) would

also decline with p. In this case, we would, paradoxically, observe a

pattern of negative selection (Brand and Xie 2010): Among students

who are at the margin of attending college, those who by observed char-

acteristics are less likely to attend college would actually benefit more

from college.

To better understand the paradoxical implication of self-selection, let

us revisit Figure 1. From Panel a, we see that in the hypothetical data,

treatment effect declines with u at each level of the propensity score,

suggesting unobserved self-selection. In other words, individuals may

have self-selected into treatment on the basis of their anticipated gains.

On the other hand, at each level of the latent variable u, treatment effect

increases with the propensity score, indicating that individuals who by

observed characteristics are more likely to be treated also benefit more

from the treatment. This relationship, however, is reversed among the

marginal entrants. As shown in Panel d, among the marginal entrants,
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individuals who appear less likely to be treated (bottom left grids) have

higher treatment effects. This pattern of negative selection at the mar-

gin, interestingly, is exactly due to an unobserved positive selection into

treatment.

3.4. Policy as a Weighting Problem

In Section 3.2, we used l(p) to denote the increment in treatment prob-

ability at each level of the propensity score p. Because MPRTE(p) is

defined as the pointwise limit of PRTE(p, al(p)) as a approaches zero,

the mathematical form of l(p) does not affect MPRTE(p). However, in

deriving the population-level (i.e., unconditional) MPRTE, we need to

use l(p) as the appropriate weight, that is,

MPRTE = C

ð1

0

MPRTE(p)l(p)dFP(p): ð17Þ

Here FP(�) is the marginal distribution function of the propensity score,

and C = 1=
Ð 1

0
l(p)dFP(p) is a normalizing constant (see Appendix B for

a derivation). Thus, given the estimates of MPRTE(p), a policymaker

could use the previous equation to design a formula for l(�) to boost the

population-level MPRTE. This is especially useful if MPRTE(p) varies

systematically with the propensity score p. For example, if one found

that the marginal return to college declines with the propensity score p,

a college expansion program targeted at students with relatively low val-

ues of p (e.g., a means-tested financial aid program) would yield higher

average marginal returns than would a universal expansion of college

enrollment regardless of student characteristics.11

In practice, for a given policy l(p), we can evaluate the aforemen-

tioned integral directly from sample data using

MPRTE’

P
i MPRTE(p̂i)l(p̂i)P

i l(p̂i)
, ð18Þ

where p̂i is the estimated propensity score for unit i in the sample. When

the sample is not representative of the population by itself, sampling

weights need to be incorporated into these summations.
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3.5. Comparison with Carneiro and Colleagues (2010)

In the previous discussion, PRTE and MPRTE are defined for a class of

policy changes in which the intensity of policy intervention depends on

the individual’s propensity score P(Z). In other words, inducements are

differentiated between individuals with different values of P(Z),

whether their differences in P(Z) are determined by the baseline covari-

ates X or the instrumental variables ZnX . This approach to defining

MPRTE contrasts sharply with the approach taken by Carneiro and col-

leagues (2010, 2011), who stipulate that all policy changes have to be

“conditioned on X .” In their approach, inducements are allowed to vary

across individuals with different values of ZnX but not across individu-

als with different values of X . For convenience, we call Carneiro et al’s

approach the conditional approach and our approach the unconditional

approach. Compared with the conditional approach, the unconditional

approach to studying policy effects has several major advantages.

First, as noted earlier, preferential policies under the conditional

approach distinguish individuals with different instrumental variables

(ZnX ) but not individuals with different baseline characteristics (X ). To

see the limitation of such policies, let us revisit the college education

example and consider a simplistic model where the only baseline cov-

ariate X is family income and the only instrumental variable ZnX is the

presence of four-year colleges in the county of residence. In this case,

an “affirmative” policy—a policy that favors students with lower values

of P(Z)—would be a policy that induces students who happen to live in

a county with no four-year colleges, regardless of family income. Given

that P(Z) equals U at the margin, this policy benefits students with rela-

tively low Us at all levels of family income. To the extent that there is

self-selection into college (i.e., Cor(h, U )\0), this policy would yield a

larger MPRTE than would a neutral policy. However, if P(Z) is largely

determined by family income rather than the local presence of four-year

colleges (a plausible scenario), the variation of P(Z) conditional on X

would be very limited, as would the gain in MPRTE from a preferential

policy. In contrast, the unconditional approach distinguishes individuals

with different values of P(Z), most of which may be driven by X rather

than ZnX . Because P(Z) equals U at the margin, this approach can sort

out marginal entrants with different levels of U effectively. Therefore,

preferential policies under the unconditional approach are more effec-

tive in exploiting unobserved heterogeneity in treatment effects.
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Second, because treatment effect in general depends on the observed

covariates X as well as the latent resistance U , an ideal policy interven-

tion should exploit the variation of treatment effect along both dimen-

sions. The conditional approach, however, differentiates individuals

with different Us but not individuals with different observed characteris-

tics (at least in practice). In contrast, by focusing on the propensity score

P(Z), the unconditional approach accounts for treatment-effect heteroge-

neity in both observed and unobserved dimensions. Because P(Z) equals

U at the margin, the bivariate function gMTE(p, u) degenerates into a

univariate function of p among marginal entrants (see Equation 16).

Thus, by weighting individuals with different values of P(Z), the uncon-

ditional approach captures the “collision” of observed and unobserved

heterogeneity at the margin. To see why the latter is more effective, con-

sider an extreme scenario where there is no unobserved sorting (i.e.,

E(hjU ) is constant) but treatment effect varies considerably by X . In

this case, the unconditional approach can partly exploit the variation of

treatment effect by X (through the first component of Equation 16),

whereas the conditional approach cannot (because it focuses exclusively

on the second component of Equation 16).

Finally, the unconditional approach is computationally simpler.

MPRTE(p) = gMTE(p, p), so no further step is needed to estimate

MPRTE(p) once we have estimates of gMTE(p, u). The conditional

approach, by contrast, needs to build MPRTE(x) on MTE(x, u) using

policy-specific weights. As shown in Table 3, these policy-specific

weights generally involve the conditional density of P(Z) given X .

Because X is usually a high-dimensional vector, estimation of these

weights is difficult and often tackled with ad hoc methods (see Section

2.3).

Table 3. Weights for Constructing MPRTE(x) from MTE(x, uD)

Parameters of Interest Weight

MPRTE(x): P� = P + a hMPRTE(x, u) = fP(Z)jX = x(u)
MPRTE(x): P� = (1 + a)P hMPRTE(x, u) =

ufP(Z)jX = x(u)

E(P(Z)jX = x)

MPRTE(x): Z�k = Zk + a hMPRTE(x, u) =
fP(Z)jX = x(u)fV ½F�1

V
(u)�

E½fV (g0Z)jX¼ x�

Source: Data from Carneiro, Heckman, and Vytlacil (2011).

Note: MPRTE = marginal policy-relevant treatment effect; MTE = marginal treatment effect.
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4. ILLUSTRATION WITH NLSY DATA

To illustrate the new approach, we reanalyze the data from Carneiro and

colleagues’ (2011) study on economic returns to college education. We

first describe the data, then demonstrate treatment-effect heterogeneity

using the newly defined gMTE(p, u), and finally, evaluate the effects of

different marginal policy changes.

4.1. Data Description

We reanalyze a sample of white males (N = 1,747) who were 16 to 22

years old in 1979, drawn from the NLSY 1979. Treatment (D) is college

attendance defined by having attained any postsecondary education by

1991. Under this definition, the treated group consists of 865 individu-

als, and the comparison group consists of 882 individuals. The outcome

Y is the natural logarithm of hourly wage in 1991.12 Following the origi-

nal study, we include in pretreatment variables (in both X and Z) linear

and quadratic terms of mother’s years of schooling, number of siblings,

the Armed Forces Qualification Test (AFQT) score adjusted by years of

schooling, permanent local log earnings at age 17 (county log earnings

averaged between 1973 and 2000), and permanent local unemployment

rate at age 17 (state unemployment rate averaged between 1973 and

2000) as well as a dummy variable indicating urban residence at age 14

and cohort dummies. Also following Carneiro and colleagues (2011),

we use the following instrumental variables (ZnX ): (1) the presence of a

four-year college in the county of residence at age 14, (2) local wage in

the county of residence at age 17, (3) local unemployment rate in the

state of residence at age 17, and (4) average tuition in public four-year

colleges in the county of residence at age 17 as well as their interactions

with mother’s years of schooling, number of siblings, and the adjusted

AFQT score. In addition, four variables are included in X but not in Z:

years of experience in 1991, years of experience in 1991 squared, local

log earnings in 1991, and local unemployment rate in 1991. More details

about the data can be found in Carneiro and colleagues’ (2011) online

appendix.

4.2. Heterogeneity in Treatment Effects

To estimate the bivariate function gMTE(p, u), we first need estimates

of MTE(x, u). In Section 2, we discussed a parametric and a
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semiparametric method for estimating MTE(x, u). Here, we examine

treatment-effect heterogeneity with the semiparametric estimates of

MTE(x, u) (Equation 12) and thus gMTE(p, u).13 Figure 2 presents our

key results for the estimated gMTE(p, u), with a shaded gray plot in

which a darker grid indicates a higher treatment effect. The effect het-

erogeneity by the two dimensions—the propensity score and the latent

resistance to treatment—exhibits an easy-to-interpret but surprising pat-

tern. On the one hand, at each level of the propensity score, a higher

level of the latent variable u is associated with a lower treatment effect,

indicating the presence of self-selection based on idiosyncratic returns

to college. This pattern of “sorting on gain” echoes the classic findings

reported in Willis and Rosen (1979) and Carneiro and colleagues

(2011). On the other hand, the color gradient along the propensity score

suggests that given the latent resistance to attending college, students

who by observed characteristics are more likely to go to college also

tend to benefit more from attending college.

If we read along the diagonal of Figure 2, however, we find that

among students who are at the margin of indifference for attending col-

lege, those who appear less likely to attend college would benefit more

from a college education, that is, MPRTE(p) declines with the

Figure 2. Treatment-effect heterogeneity based on semiparametric estimates
of gMTE(p, u).
Note: MTE = marginal treatment effect.
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propensity score p. Figure 3 shows smoothed estimates of MPRTE(p)

as well as its two components (see Equation 16). The negative associa-

tion between h and the latent resistance U more than offsets the posi-

tive association between (b1 � b0)T X and the propensity score P(Z),

resulting in the downward slope of MPRTE(p). Echoing our discussion

in Section 3.3, it is unobserved “sorting on gain” that leads to the nega-

tive association between the propensity score and returns to college

among students at the margin.

We use weights given in Table 2 to estimate ATE, TT, and TUT at

each level of the propensity score. Figure 4 shows smoothed estimates

of ATE(p), TT(p), TUT(p), and MPRTE(p). Several patterns are worth

noting. First, there is a sharp contrast between ATE(p) and MPRTE(p):

A higher propensity of attending college is associated with a higher

return to college on average (solid line) but a lower return to college

among marginal entrants (dot-dash line). Second, TT(p) (dashed line) is

always larger than TUT(p) (dotted line), suggesting that at each level of

the propensity score, individuals are positively self-selected into college

based on their idiosyncratic returns to college. Finally, TT(p) and

TUT(p) converge to ATE(p) and MPRTE(p) at the extremes of the pro-

pensity score. When p approaches 0, TT(p) converges to MPRTE(p) and

Figure 3. Decomposition of MPRTE(p) based on semiparametric estimates
of gMTE(p, u).
Note: MPRTE = marginal policy-relevant treatment effect; MTE = marginal treatment effect.
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TUT(p) converges to ATE(p). At the other extreme, when p approaches

1, TT(p) converges to ATE(p) and TUT(p) converges to MPRTE(p).

Looking back at Figure 1, we see that these relationships simply reflect

compositional shifts in the treated and untreated groups as the propen-

sity score changes from 0 to 1.

4.3. Evaluation of Policy Effects

Given the estimates of ATE(p), TT(p), and TUT(p), we construct their

population averages using appropriate weights across the propensity

score. For example, to estimate TT, we simply integrate TT(p) against

the marginal distribution of the propensity score among individuals who

attended college. The estimates of MPRTE(p) allow us to construct dif-

ferent versions of MPRTE, depending on how the policy change weights

students with different propensities of attending college (see Equation

18). Table 4 reports our estimates of ATE, TT, TUT, and MPRTE under

different policy changes from the parametric and semiparametric esti-

mates of MTE(x, u). To compare our new approach with Carneiro and

colleagues’ (2011) original approach, we show estimates built on

Figure 4. Heterogeneity in ATE, TT, TUT, and MPRTE(p) by propensity
score based on semiparametric estimates of gMTE(p, u).
Note: ATE = average treatment effect; TT = treatment effect of the treated; TUT =

treatment effect of the untreated; MPRTE = marginal policy-relevant treatment effect;

MTE = marginal treatment effect.
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gMTE(p, u) and those built on MTE(x, u). Following Carneiro and col-

leagues (2011), we annualize the returns to college by dividing all para-

meter estimates by four, which is the average difference in years of

schooling between the treated and untreated groups.

The first three rows of Table 4 indicate that TT . ATE . TUT ’ 0.

That is, returns to college are higher among individuals who actually

attended college than among those who attended only high school, for

whom the average returns to college are virtually zero. Using either the

parametric or semiparametric estimates of MTE(x, u), our new approach

and the original approach yield nearly identical point estimates and

bootstrapped standard errors. This consistency affirms our argument

that gMTE(p, u) preserves all of the treatment-effect heterogeneity that

is consequential for selection bias. Although the redefined MTE seems

to contain less information than the original MTE (as it projects

(b1 � b0)T X onto the dimension of P(Z)), the discarded information

does not contribute to identification of average causal effects.

The last four rows of Table 4 present our estimates of MPRTE under

four stylized policy changes: (1) l(p) = a, (2) l(p) = ap, (3)

Table 4. Estimated Returns to One Year of College

Parametric (Normal) Semiparametric

Building Block MTE(x, u) gMTE(p, u) MTE(x, u) gMTE(p, u)

ATE .066
(.038)

.066
(.038)

.082
(.041)

.082
(.041)

TT .139
(.035)

.142
(.035)

.165
(.048)

.167
(.049)

TUT –.006
(.067)

–.009
(.067)

.000
(.060)

.000
(.061)

MPRTE
l(p) = a .066

(.038)
.065

(.039)
.084

(.041)
.083

(.041)
l(p) = ap .061

(.050)
.050

(.048)
l(p) = a(1� p) .068

(.033)
.116

(.042)
l(p) = aI(p , 0:3) .080

(.035)
.155

(.055)

Note: ATE = average treatment effect; TT = treatment effect of the treated; TUT = treatment

effect of the untreated; MPRTE = marginal policy-relevant treatment effect; MTE = marginal

treatment effect. Numbers in parentheses are bootstrapped standard errors (250 replications).
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l(p) = a(1� p), and (4) l(p) = aI(p\0:3). Put in words, the first policy

change increases everyone’s probability of attending college by the

same amount, the second policy change favors students who appear

more likely to go to college, the third policy change favors students

who appear less likely to go to college, and the last policy change only

targets students whose observed likelihood of attending college is less

than 30 percent. For each policy change, the MPRTE is defined as the

limit of the corresponding PRTE as a goes to zero. The first policy

change is also the first policy change considered by Carneiro and col-

leagues (2011:2760), that is, Pa = P + a (see also the first row of Table

3). For this case, we estimated the MPRTE using both the original

approach and our new approach. As expected, the two approaches yield

the same results. However, the other three policy changes considered

here cannot be readily accommodated within the original framework

(see Section 3.5). Thus, we evaluate their effects using only our new

approach, that is, via Equation 18.

Although the estimates of TUT are close to zero, all four policy

changes imply substantial marginal returns to college. For example, under

the first policy change, the semiparametric estimate of MPRTE is .083,

suggesting that one year of college would translate into an 8.3 percent

increase in hourly wages among marginal entrants. However, the exact

magnitude of MPRTE depends heavily on the form of the policy change,

especially under the semiparametric model. Whereas the marginal return

to a year of college is about 5 percent if we expand everyone’s probability

of attending college proportionally (policy change two), it can be as high

as 15.5 percent if we only increase enrollment among students whose

observed likelihood of attending college is less than 30 percent (policy

change four). Figure 5 shows how different policy changes produce differ-

ent compositions of marginal college entrants. Because students who ben-

efit the most from college are located at the low end of the propensity

score, a college expansion program targeted at those students will yield

the highest marginal returns to college. Fortuitously, earlier research that

did not account for the presence of unobserved selection reached similar

policy implications (Brand and Xie 2010).

5. DISCUSSION AND CONCLUSION

Due to the ubiquity of population heterogeneity in social phenomena, it

is impossible to evaluate causal effects at the individual level. All efforts
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to draw causal inferences in social science must be at the group level.

Yet with observational data, even group-level inference is plagued by

two types of selection bias: Individuals in the treated and comparison

groups may differ systematically not only in their baseline outcomes but

also in their treatment effects. Depending on whether unobserved selec-

tion is assumed away, traditional methods for causal inference from

observational data can be divided into two classes, as shown in the first

row of Table 5. The first class, including regression adjustment, match-

ing, and inverse probability of treatment weighting (Robins, Hernan,

and Brumback 2000), rests on the assumption of ignorability: After con-

trolling for a set of observed covariates, treatment status is independent

Figure 5. Semiparametric estimates of marginal policy-relevant treatment
effect under four policy changes.
Note: MTE = marginal treatment effect.
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of both baseline outcomes and treatment effects. The second class of

methods, including instrumental variables (IV), regression discontinuity

(RD) designs (Hahn, Todd, and Van der Klaauw 2001; Thistlethwaite

and Campbell 1960), and fixed-effects models, allows for unobserved

selection into treatment but requires exogenous variation in treatment

status—either between or within units—to identify causal effects.

Both classes of methods allow treatment effects to vary in the popula-

tion, but in common practices neither systematically models treatment-

effect heterogeneity.14 When treatment effects are heterogeneous, some

of these methods estimate quantities that are not of primary interest to

the researcher. For example, when treatment effect varies according to

the level of a covariate, main-effects-only regression models cannot

recover standard causal estimands such as ATE or TT but instead esti-

mate a conditional-variance-weighted causal effect that has little sub-

stantive meaning (Angrist and Pischke 2008; Elwert and Winship 2010).

Moreover, when treatment effect is heterogeneous, IV and RD designs

can only identify the average causal effect among individuals whose

treatment status is influenced by the IV (Imbens and Angrist 1994) or in

the case of fuzzy RD designs, by whether the running variable surpasses

the “cutoff point” (Hahn, Todd, and Van der Klaauw 2001). Similarly,

fixed-effects models can only identify the average causal effect among

individuals who change their treatment status over the study period.

The second row of Table 5 summarizes the four approaches that

can be used to systematically study treatment-effect heterogeneity,

Table 5. Methods for Identifying and Estimating Causal Effects from
Observational Data

Allowing for Unobserved Selection?

Noa Yes

Systematically
modeling
treatment-effect
heterogeneity?

No Regression adjustment,
matching, IPW, etc.

IV, RD design, fixed-effects
models, etc.

Yes E(Y1 � Y0jX = x), MTE(x, u),
E(Y1 � Y0jP = p) gMTE(p, u)

Note: IV = instrumental variables; RD = regression discontinuity; IPW = inverse probability

weighting; MTE = marginal treatment effect.
aWhen there is unobserved selection by treatment effect but not by the baseline outcome,

matching and weighting methods can still be used to consistently estimate treatment effect of the

treated (but not average treatment effect).
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especially treatment-effect heterogeneity by pretreatment characteristics.

The first approach, denoted as E(Y1 � Y0jX ), includes the long-standing

practice of adding interaction terms between treatment status and covari-

ates in conventional regression models as well as recent proposals to fit

nonparametric surfaces of potential outcomes and their difference (e.g.,

Hill 2011). The second approach, denoted as E(Y1 � Y0jP), models

treatment effect as a univariate function of the propensity score (e.g.,

Xie et al. 2012; Zhou and Xie 2016). Because the propensity score is the

only dimension along which treatment effect may be correlated with

treatment status, this approach not only provides a useful solution to data

sparseness, but it also facilitates projection of treatment effects beyond

particular study settings (Stuart et al. 2011; Xie 2013). However, as

noted earlier, these two approaches rely on the assumption of ignorabil-

ity. When ignorability breaks down, interpretation of the observed het-

erogeneity in treatment effects becomes ambiguous (Breen et al. 2015).

The latter two approaches, that is, the MTE-based approach and our

extension of it, accommodate unobserved selection through use of a

latent index model for treatment assignment. In this model, a scalar

error term is used to capture all the unobserved factors that may induce

or impede treatment. As a result, treatment status is determined by the

“competition” between the propensity score P(Z) and the latent variable

U representing unobserved resistance to treatment. Therefore, the pro-

pensity score P(Z) and the latent variable U are the only two dimen-

sions along which treatment status may be correlated with treatment

effects. The MTE, as in Heckman and Vytlacil’s (1999, 2001a, 2005,

2007b) original formulation, is asymmetrical with respect to these two

dimensions because it conditions on the entire vector of observed cov-

ariates X as well as the latent variable U . Because of this asymmetry,

the original MTE-based approach has a number of drawbacks, including

(1) an exclusive attention (in practice) to unobserved heterogeneity

(rather than observed heterogeneity) in treatment effects, (2) difficulty

of implementation due to unwieldy weight formulas, and (3) inflexibil-

ity in the modeling of policy effects (see Section 3.5).

To overcome these limitations, we presented an extension of the

MTE framework through a redefinition of MTE. By conditioning on the

propensity score P(Z) and the latent variable U , the redefined MTE not

only treats observed and unobserved selection symmetrically, but it

more parsimoniously summarizes all the treatment-effect heterogeneity

that is consequential for selection bias. As a bivariate function, it can be
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easily visualized. As with the original MTE, the redefined MTE also can

be used as a building block in evaluating aggregate causal effects. Yet

the weights associated with the new MTE are simpler, more intuitive,

and easier to compute (compare Table 2 with Tables 1 and 3). Finally,

the new MTE immediately reveals heterogeneous treatment effects

among individuals who are at the margin of treatment, thus allowing us

to design more cost-effective policy interventions.

Our extension of the MTE approach is not a panacea. Like the

original approach, it hinges on credible estimates of MTE(x, u).

Identification of MTE(x, u) requires at least a valid IV in the treatment

assignment equation. Moreover, under either the parametric or semi-

parametric model, the statistical efficiency of estimates of MTE(x, u)

depends heavily on the strength of IVs (Zhou and Xie 2016). When the

IVs are relatively weak in determining treatment status, MTE-based

estimates of aggregate causal effects can be imprecise. Nonetheless, as

long as valid instruments are present, more precise estimates can always

be achieved with a larger sample size.

APPENDIX A: IDENTIFICATION OF gMTE(p, u)

UNDER ASSUMPTIONS 1, 2, AND 3

From Assumption 1, we know V?ZjX . Because U and P(Z) are functions of V

and Z, respectively, U?P(Z)jX . U follows a standard uniform distribution for

each X = x, so we also have U?X . By the rules of conditional independence,

we have U?X jP(Z). Using this fact and the law of total expectation, we can

write gMTE(p, u) as

gMTE(p, u) =EX jP(Z) = p, U = uE½Y1 � Y0jP(Z) = p, U = u, X �
=EX jP(Z) = pE½Y1 � Y0jP(Z) = p, U = u, X �
=EX jP(Z) = pE½Y1 � Y0jU = u, X � (because(h, U )?P(Z)jX )

=EX jP(Z) = pMTE(X , u):

ð19Þ

Thus gMTE(p, u) is simply the conditional expectation of MTE(X , u) given

P(Z) = p. Given Assumption 3, MTE(X , u) can be written as Equation 14.

Substituting it into Equation 19 yields

gMTE(p, u) =E½m1(X )� m0(X )jP(Z) = p�+E½hjU = u�:
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APPENDIX B: DERIVATION OF EQUATION 17

To see why Equation 17 holds, consider the overall PRTE for a given a. Given

that P(Z) = p, the size of inducement al(p) reflects the share of individuals that

are induced into treatment (“compliers”), and the overall PRTE is a weighted

average of PRTE(p, al(p)) with weights al(p):

PRTEa =

Ð 1

0
al(p)PRTE(p, al(p))dFP(p)Ð 1

0
al(p)dFP(p)

=

Ð 1

0
l(p)PRTE(p, al(p))dFP(p)Ð 1

0
l(p)dFP(p)

,

where FP(�) denotes the marginal distribution function of the propensity score.

We then define the population-level MPRTE as the limit of PRTEa as a

approaches zero. Under some regularity conditions,15 we can take the limit

inside the integral

MPRTE = lim
a!0

PRTEa

=

Ð 1

0
l(p) lim

a!0
PRTE(p, al(p))dFP(p)Ð 1

0
l(p)dFP(p)

=

Ð 1

0
l(p)MPRTE(p)dFP(p)Ð 1

0
l(p)dFP(p)

:

Denoting C = 1=
Ð 1

0
l(p)dFP(p), we obtain Equation 17.
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Notes

1. Heckman and Robb (1986) also framed propensity score matching as a special case

of control function methods.
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2. In the classic Roy model (Roy 1951), ID = Y1 � Y0. In that case, Z = X and

V = �h.

3. The property that Z affects treatment status only through the propensity score in an

additively separable latent index model is called index sufficiency (Heckman and

Vytlacil 2005).

4. An alternative method to identify the MTE nonparametrically is based on separate

estimation of E½Y jP(Z), X , D = 0� and E½Y jP(Z), X , D = 1� (see Brinch, Mogstad,

and Wiswall 2017; Heckman and Vytlacil 2007b).

5. In estimating K(p), we need to impose constraints on b0 and b1 such that

K(0) = K(1) = 0. K(0) = 0 is from its definition. K(1) =
Ð 1

0
E½hjU = u�du =

EUE½hjU �=E½h�= 0.

6. The maximum likelihood estimation can be easily implemented in R using the

sampleSelection package (see Toomet and Henningsen 2008).

7. Because the treatment assignment model is now a probit model, sV is usually nor-

malized to 1.

8. More flexible methods, such as generalized additive models and boosted regression

trees, also can be used to estimate propensity scores (e.g., McCaffrey, Ridgeway,

and Morral 2004).

9. In a companion paper (Zhou and Xie forthcoming), we discuss the regions over

which gMTE(p, u) can be nonparametrically identified with and without the

assumption of additive separability.

10. Studies that use compulsory schooling laws, differences in the accessibility of

schools, or similar features as instrumental variables also find larger economic

returns to college than do least squares estimates (Card 2001). However, this com-

parison does not reveal how returns to college vary by covariates or the propensity

score.

11. Admittedly, the discussion here provides no more than a theoretical guide to prac-

tice. In the real world, designing specific policy instruments to produce a target

form of l(p) can be a challenging task.

12. Hourly wage in 1991 is defined as an average of deflated (to 1983 constant dollars)

nonmissing hourly wages reported between 1989 and 1993.

13. Results based on parametric estimates of MTE(x, u) (Equation 11) are substan-

tively similar.

14. Although matching and weighting methods are well equipped to estimate ATE,

TT, and TUT under the assumption of ignorability, they are seldom used to study

treatment-effect heterogeneity by individual characteristics.

15. A sufficient (but not necessary) condition is that gMTE(p, u) is bounded over

½0, 1�3½0, 1�. By the mean value theorem, PRTE(p, al(p)) can be written asgMTE(p, p�) where p� 2 ½p, p + al(p)�. PRTE(p, al(p)) is thus also bounded. By

the dominated convergence theorem, the limit can be taken inside the integral.
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Returns of 1968 to the Angry Students.” Journal of Labor Economics 26(1):1–33.

McCaffrey, Daniel F., Greg Ridgeway, and Andrew R. Morral. 2004. “Propensity Score

Estimation with Boosted Regression for Evaluating Causal Effects in Observational

Studies.” Psychological Methods 9(4):403–25.

Moffitt, Robert. 2008. “Estimating Marginal Treatment Effects in Heterogeneous

Populations.” Annales d’Economie et de Statistique (91/92):239–61.

Quandt, Richard E. 1958. “The Estimation of the Parameters of a Linear Regression

System Obeying Two Separate Regimes.” Journal of the American Statistical

Association 53(284):873–80.

Quandt, Richard E. 1972. “A New Approach to Estimating Switching Regressions.”

Journal of the American Statistical Association 67(338):306–10.

Robins, James M., Miguel Angel Hernan, and Babette Brumback. 2000. “Marginal

Structural Models and Causal Inference in Epidemiology.” Epidemiology 11(5):550–60.

Robinson, Peter M. 1988. “Root-N-Consistent Semiparametric Regression.”

Econometrica 56(4):931–54.

Rosenbaum, Paul R., and Donald B. Rubin. 1983. “The Central Role of the Propensity

Score in Observational Studies for Causal Effects.” Biometrika 70(1):41–55.

Roy, Andrew Donald. 1951. “Some Thoughts on the Distribution of Earnings.” Oxford

Economic Papers 3(2):135–46.

Sakamoto, Arthur, and Meichu D. Chen. 1991. “Inequality and Attainment in a Dual

Labor Market.” American Sociological Review 56(3):295–308.

Smock, Pamela J., Wendy D. Manning, and Sanjiv Gupta. 1999. “The Effect of

Marriage and Divorce on Women’s Economic Well-Being.” American Sociological

Review 64(6):794–812.

Stuart, Elizabeth A., Stephen R. Cole, Catherine P. Bradshaw, and Philip J. Leaf. 2011.

“The Use of Propensity Scores to Assess the Generalizability of Results from

Randomized Trials.” Journal of the Royal Statistical Society: Series A (Statistics in

Society) 174(2):369–86.

Thistlethwaite, Donald L., and Donald T. Campbell. 1960. “Regression-Discontinuity

Analysis: An Alternative to the Ex Post Facto Experiment.” Journal of Educational

Psychology 51(6):309–317.

Toomet, Ott, and Arne Henningsen. 2008. “Sample Selection Models in R: Package

sampleSelection.” Journal of Statistical Software 27(7):1–23.

384 Zhou and Xie



Vytlacil, Edward. 2002. “Independence, Monotonicity, and Latent Index Models: An

Equivalence Result.” Econometrica 70(1):331–41.

Willis, Robert J., and Sherwin Rosen. 1979. “Education and Self-Selection.” Journal of

Political Economy 87(5):S7–S36.

Winship, Chris, and Robert D. Mare. 1992. “Models for Sample Selection Bias.” Annual

Review of Sociology 18:327–50.

Winship, Chris, and Stephen Morgan. 1999. “The Estimation of Causal Effects from

Observational Data.” Annual Review of Sociology 25:659–706.

Xie, Yu. 2013. “Population Heterogeneity and Causal Inference.” Proceedings of the

National Academy of Sciences 110(16):6262–68.

Xie, Yu, Jennie Brand, and Ben Jann. 2012. “Estimating Heterogeneous Treatment

Effects with Observational Data.” Sociological Methodology 42(1):314–47.

Zhou, Xiang. 2019. localIV: Estimation of Marginal Treatment Effects using Local

Instrumental Variables. R package version 0.2.1, available at the Comprehensive R

Archive Network (CRAN).

Zhou, Xiang, and Yu Xie. 2016. “Propensity Score-Based Methods Versus MTE-Based

Methods in Causal Inference: Identification, Estimation, and Application.”

Sociological Methods & Research 45(1):3–40.

Zhou, Xiang, and Yu Xie. Forthcoming. “Marginal Treatment Effects from a Propensity

Score Perspective.” Journal of Political Economy.

Author Biographies

Xiang Zhou is an assistant professor in the Department of Government at Harvard

University. He received a PhD in sociology and statistics from the University of

Michigan. His research broadly concerns quantitative methodology, economic inequal-

ity and mobility, and contemporary Chinese society. His work has appeared in

American Sociological Review, American Journal of Sociology, Journal of Political

Economy, and Proceedings of the National Academy of Sciences, among other peer-

reviewed journals.

Yu Xie is Bert G. Kerstetter ’66 University Professor of Sociology and director of Paul

and Marcia Wythes Center on Contemporary China, Princeton University. He is also a

Visiting Chair Professor of the Center for Social Research, Peking University. His main

areas of interest are social stratification, demography, statistical methods, Chinese stud-

ies, and sociology of science. His recently published books include Marriage and

Cohabitation (University of Chicago Press 2007) with Arland Thornton and William

Axinn, Statistical Methods for Categorical Data Analysis (Emerald 2008, second edi-

tion) with Daniel Powers, and Is American Science in Decline? (Harvard University

Press 2012) with Alexandra Killewald. His methodological work is on categorical data

analysis, causal inference, and survey research. Xie is also a former editor of

Sociological Methodology.

Heterogeneous Treatment Effects in the Presence of Self-Selection 385


