It is well-known that, under the logit model for binary response, the random
sampling and response-based sampling maximum likelihood estimators coincide for
all parameters except the intercept. Citing this coincidence, many researchers have
assumed the logit model and analyzed data from response-based samples as if those
data were obiained by random sampling. We argue that this practice should be
avoided uniess the researcher really believes the logit specification. One preferable
alternative is the weighted maxinwam likelihood estimetor of Manski and Lerman
(1977). Random saempling maximum Bkelihood enalysis does not have a natural
interpretation when the true response function is not logit. Weighted maximum
likelihood analysis estimates a constrained best predictor of the binary response and
S0 remains inserpretable.
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n binary response analysis, a sampling process is termed

“response-based” if it stratifies on the response.! Response-
based samples arc potentially very useful in sociological research.
Many social phenomena are rare events; hence a random sample
will not find enough cases with positive response to the event under
study for effective statistical analysis. For example, a researcher
who wants to study the determinants of crime commission would
not find many respondents with criminal histories if he or she were
to conduct a national survey based on random sampling. A more
effective approach would be to obtain a random sample of those
with criminal records (from the court archives, for example) and
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another sample of the general population without criminal rec-
ords. The combined sample constitutes a response-based sample.

Manski and Lerman (1977) demonstrated that the maxi-
mum likelihood estimator for random samples and exogenously
stratified samples is generally inconsistent when applied to
response-based samples. As a correction, they proposed a simple
procedure—a weighted maximum likelihood estimator—which
they proved to be consistent. Since then, various estimators have
appeared. Manski and McFadden (1981) introduced a conditional
maximum likelihood method. See Bye et al. (1987) for a socio-
logical application. Cosslett (1981a, 1981b) studied the full infor-
mation maximum likelihood estimator under response-based
sampling. Hsieh et al. (1985) extended the domain of these
methods in various respects. A text review is given by Amemiya
(198S: 319-338).

The purpose of the foregoing literature is to find response-based
sampling estimators for general binary response models. The word
general is emphasized because for the logit model the full-
information maximum likelihood estimator under response-based
sampling happens to coincide with that under random sampling
for all parameters except the intercept. Moreover, the appropriate
maximum likelihood estimate for the intercept can be obtained
post hoc. Versions of this result are reported in the articles listed
above and also in Bishop et al. (1975: 63) and Prentice and Pyke
(1979).2

Citing this coincidence, many researchers have assumed the
logit model and analyzed data from response-based samples as if
those data were obtained by random sampling. Gortmaker (1979)
is a sociological example. Researchers using the logit model have
generally not argued that the true response function is logit.
Rather, they have applied the conventional wisdom that maxi-
mum likelihood estimates of logit models tend to be very similar to
corresponding estimates of other binary response models such as
the probit. See, for example, Cox (1970: 28) and Maddala (1983:
23). Given this, the argument goes, one might as well choose the
convenient logit form.
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Is this practice justified? Should researchers analyzing data
from response-based samples simply specify the logit model and
apply the random sampling maximum likelihood estimator? We
have found that, unless one really believes the logit specification,
the answer is negative.

The conventional wisdom on maximum likelihood logit analy-
sis is well-grounded in random samples but not in response-based
samples. In random samples, the maximum likelihood estimate of
a logit model has an appealing interpretation whether or not the
logit specification is correct. That is, the fitted logit model esti-
mates a constrained best predictor of binary response. In a certain
sense, the fitted model approximates the true probabilistic re-
sponse function optimally. Discussions of this fact appear in Efron
(1978), Hastie (1987), and Manski and Thompson (1989).

In response-based samples, maximum likelihood logit analysis
loses its best predictor interpretation. If the logit specification is
not correct, the fitted model does not necessarily approximate the
true response function well. Hence the practice of specifying the
logit model and estimating by random sampling maximum likeli-
hood is dangerous unless one really believes the logit specification.
We will elaborate on this in the next section.

The foregoing discussion leaves the applied researcher in an
uncomfortable position. One rarely, if ever, knows whether the
response function has the logit or some other form. How then
should one proceed given response-based data? Happily, answers
are available.

One approach is to apply some semiparametric method whose
validity does not require knowledge of the exact form of the
response function. Various such methods have been proposed in
recent years for use in random and exogenously stratified samples.
See Manski (1988) for a survey. Of these, the maximum score
estimator has been proved applicable to response-based samples
(sec Manski, 1986). It may be that response-based sampling ver-
sions of other semiparametric estimators can be developed.

Second, one may select some response function specification
(say logit) and apply a method that is interpretable whether or not
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that specification is correct. The weighted maximum likelihood
estimator of Manski and Lerman (1977) is such a method. By
weighting the observations appropriately, this method makes the
response-based sample behave asymptotically as if it were a ran-
dom sample. Hence the weighted maximum likelihood estimate of
a logit model possesses the same best predictor interpretation as
does maximum likelihood logit analysis in random samples.
This article elaborates on the second answer. First we formally
state the problem of estimation from response-based samples and
cite some key results from the literature. Then we qualitatively
compare the limiting behavior of weighted and random sampling
maximum likelihood estimates of a logit model when the true
response function may not be logit. After that, we report quan-
titative findings on the asymptotic bias of the weighted and
unweighted estimators. Finally we present a Monte Carlo experi-
ment that provides evidence on small sample bias and precision.

ESTIMATION FROM
RESPONSE-BASED SAMPLES

Let x; ¢ R™ be a vector of variables measuring the ith individ-
ual’s characteristics, where i= 1, ... N, and Nis the sample size. Let
the marginal density of x in the population be p(x). Let the binary
response for the ith individual be j ¢ J, where J= 0, 1 is the response
set. The objective is to learn how the response probability Pr(j %)
varies as a function of x. Assume tentatively that Pr(j|x) =
P(j| x,0*), where Pis a function known up to a vector of parame-
ters 0* ¢ ©, and © is a parameter space of finite dimension K. Given
this, the problem of learning the response function reduces to one
of estimating 6*.

In the population the probability density of a (j, x) pair is
U, x) = P(j|x, *)p(x). (1]

We now want to distinguish three sampling schemes and derive the
likelihood of an observation under each regime.



Xie, Manski /| RESPONSE-BASED SAMPLES 287

Random sampling. The likelihood of drawing an observation
U, x) is

A =SU, x) = P(jlx, 6*)p(x). 2

Exogenous sampling. The population is stratified on the explanatory
variable x. Let the sampling distribution of x be denoted g. An example is
where the researcher oversamples small racial or ethnic groups. The
likelihood of an observation is

A. = P(jlx, 6%)g(x). 31

Response-based sampling. The population is stratified on the
binary response variable j and the sampling proportions for j = 0
and j = 1 are different from those in the population. That is, we
oversample one response group and undersample the other. Let
N;/N be the sampling proportion for response j. Let Q(j) be the
population probability of response j. The likelihood of an observa-
tion is then

N,
N, PU\x60)p6)
Ny = Prixli) 7 = o0 : (4]

The first equality of the equation follows from the definition of

conditional probability. The second equality follows from Bayes
Theorem.

Maximum likelihood estimation under response-based sam-
pling is qualitatively different from such estimation under random
or exogenous sampling. The usual presumption is that the research
knows neither 6* nor the marginal density p; thus p is a function-
valued nuisance parameter. Inspection of equations 2 and 3 shows
that under random and exogenous sampling the likelihood de-
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composes into the product of the response probability P(j| x, 6*)
and the density function p or g. In both cases, the maximum
likelihood estimate for 6* solves the problem.

N
max Z log P(j;|x,, 6). [5]
i=1

On the other hand, inspection of equation 4 shows that, under
response-based sampling, the likelihood does not decompose in
this manner. The reason is that the quantity Q(j) is implicitly
dependent on both 6* and on p, via the equation

0() = [P(j1x,6%) p@)ax, [6]

where the integration is over the entire space of x. Hence maxi-
mum likelihood estimation requires solution of the problem.

N P(lx, 0¥ ()
sebrvew ,.z,;hg TPG %, 0)¥()dx ° 71

where ¥ is the space of all possible density functions for x, ¥(x).

It was shown by Manski and Lerman (1977) that, when a sample
is response-based, ignoring the sampling process and applying the
random sampling maximum likelihood method S generally yiclds
inconsistent estimates. Tooomforthem Manski
and Lerman (1977) proposed the weighted maximum likelihood
estimator, which is easy to implement.4

The weighted maximum likelihood estimator solves the problem

N
max Z w(j;) log P(j;| x,, 6), [8]
0e® i=1
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where w(j) = Q(j)/(N;/N). Application of this estimator pre-
sumes knowledge of O(j) and N;/N. The datareveal N;/N. What
is crucial is knowledge of the distribution of J in the population,
Q(j). Information about Q(j) might be obtained in several ways.
It could come from the census tabulations, from other social
'surveys, or from national estimates conducted by certain national
organizations. Once Q(j) is obtained, the weighted maximum
likelihood estimator can be implemented using any computer
software with a maximum likelihood estimation routine that
allows for weighting.5 A more detailed discussion of computer
programs is given in the Appendix.

An exception to the general rule that random sampling maxi-
mum likelihood is inconsistent in response-based samples is the
logit model with an intercept term. It can be shown that for this
model, solution of problems 5 and 7 yields the same estimates for
all components of 6* except the intercept. Even for the intercept,
the inconsistency problem is innocuous since the estimate can be
corrected after estimation.¢ This result derives from the special
mathematical form of the logistic distribution, which makes the
logit model a member of the class of multiplicative intercept
models (Hsieh et al., 1985).

ESTIMATION WHEN THE RESPONSE
FUNCTION IS MISSPECIFIED

If the actual response function has the logit form, then one
may estimate 0* cither by the weighted maximum likelihood
method or by random sampling maximum likelihood, correcting
the intercept ex post. Both approaches yield consistent, asymp-
totically normal estimates. The latter is asymptotically more
efficient.

We are interested in the behavior of these approaches when the
actual response function is not logit. Consider the weighted max-
imum likelihood estimate. Its probability limit is obtained by
solving the following limiting version of equation 8:
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P Sl logP°(01x, 8
max (Olf,ﬁ ) 00) w(0)log (le,‘ ) (9]
N,IN 0 )
+P(lx,6 )—Q(—l)-w(l)log (1lx,8)] p(x)dx,

where Pis the true probability function and P° is the logit proba-
bility function used in estimation. The weight w(j) equals
0Q(J)/ (N;/N). Hence, the problem reduces to

max f [P(le, 6*)logP° (01, 6) | [10]

+P(11x,0%)ogP°(11x, 0)]p(x)dx,

the same limiting problem as solved by maximum likelihood
under random sampling.

As is well-known, the solution to problem 10 is 6* if the true
response function P and the assumed one P° coincide. If Pis not
the same as P°, problem 10 nevertheless retains a useful interpre-
tation; it determines a constrained best predictor of the binary
response. Efron (1978), Hastie (1987), Manski and Thompson
(1989) observe that equation 10 can be rewritten as

min E[~log {1~ 1/~ P°(11x,0) }], [11]

where the expectation is with respect to the true population
density P(j|x, 6*)p(x). Problem 11 defines a constrained best
predictor of the binary response j, conditional on observation of
x. Suppose that one wishes to obtain the best predictor of j within
the class of predictor functions P°(1|x, 8), 0 ¢ ©, when the loss
incurred for prediction errors is - log{1 - |- P°(1|x, 6)|}. Then
one would solve problem 11.
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Now consider the random sampling maximum likelihood
estimate of the logit model. Assume that as N — oo, the ratios
No/ Nand No/ N approach limits Hoand H,. Then under response-
based sampling, the probability limit is obtained by solving the
following limiting version of problem 5:

H,

2(0)

logP° (Ol x, 6) (12]

0e®

max [P(le, 0*)

H,

+P(11x,6%) )

logP°(11x, o)] p(x)dx.

The intercept aside, the solution to problem 12 is 8* if Pis logit, as
P°. But problem 12 does not define a best predictor of j when P
and P° do not coincide. The random sampling maximum
likelihood logit estimate lacks any natural interpretation when
the response function is not logit.”

ANALYSIS OF ASYMPTOTIC BIAS

This section provides a quantitative analysis of the asymptotic
bias associated with the estimators 5 and 8 when the true response
function is not logit. Assume that a researcher has a response-
based sample and that the marginal distribution of the response
Q@) (j =0, 1) is known. Therefore, the weighted maximum
likelihood estimator can be applied. The problem that the
rescarcher faces is the following. If he or she knows that the true
model is logit, he or she should rua the random sampling maxi-
mum likelihood logit estimator in order to retain efficiency; if he
or she does not know this, the discussion of the preceding sec-
tion suggests that weighted maximum likelihood estimation is
preferable.

In order to challenge the conventional wisdom most directly,
we assume that the true response function is probit, a specifica-
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tion usually thought very close to the logit. In particular, we
specify the following probit model: y; = a + bx; + ¢, where ¢; is
distributed standard normal. We observe y,= 1if y; =0, and y;=0
otherwise. The parameters are set to @ = b = 1. The independent
variable x; is distributed normally with a mean of @ and a variance
of one. The mean of x is allowed to vary in order to capture
various ratios of y = 1 to y = 0. We choose three values for a: -2, -3,
and -4. They give respectively 23.98%, 7.87%, and 1.69% of y = 1
cases in the population. Samples are assumed to be drawn as
response-based, with equal numbers of y = 1 cases and of y =0
cases. That is, No/N= N,/N=0.5.

For samples thus drawn, we obtain both the weighted and the
random sampling maximum likelihood logit estimates. The limits
of the estimators as the sample size approaches infinity are
obtained by numerically solving equations 10 and 12, where 6 =
(a, b).

Table 1 gives the asymptotic biases of the two estimates for b.3
Observe that generally the weighted logit estimate has smaller
asymptotic bias. Such bias as the weighted logit method has is not
due to the fact that the sample is response-based. It is rather due
to the imperfect approximation of the probit model by the logit
model. This is especially true when data are heavily concentrated
at one of the tails (as in the case where a = —4) since the normal
distribution differs from the logistic distribution more at the tails
than in the middle range (Johnson and Kotz, 1970: 1-21). The
asymptotic bias of the weighted logit estimate under response-
based sampling is the same as that of the usual unweighted logit
‘estimate under random sampling. This is because, in the limit, the
weighted logit estimator under response-base sampling solves the
same problem as does the unweighted logit estimator under ran-
dom sampling.

We also observe that the asymptotic bias of the random sam-
pling logit estimator increases as a thanges from -2 to -4, and the
population probability Q, further departs from the sampling
probability H, (0.5). This result is consistent with Cosslett’s
(1981a) conclusion. Treating response-based samples as if they
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TABLE 1
Asymptotic Bias of Alternative Estimators when True Model is Probit

Estimation Methods
a % of y=1 Unweighted Logit Weighted Logit

-2 23.98 -0.02 -0.04
-3 7.87 0.12 0.05
-4 1.69 0.35 0.18

NOTE: Asymptotic biases for coefficient b are displayed. The true model is
vi=at+bx;+e,
whe:e a=ph= 1,;,- ~ Nia, 1). c,is distributed a5 standard normal. We observe y; = 1
ify; > 0,andy; = 0 otherwise. Asymptotic biss equals
PII'MN.‘..WN -b*),
where by, is the estimate based on N observations, b® is the true parameter, and N
is the sample size. Estimates were rescaled to be comparable to probit estimates.

were random samples becomes increasingly inappropriate as H;
moves away from Q.

There is no perfect way of rescaling parameters from logit to
probit; our rule of 3%/ r is only intuitively appealing. It is possible
that the comparisons reported in Table 1 might be confounded by
the rescaling method that we chose. To compare further the
performance of the two estimators, we carry out another exercise:
comparing estimated probabilities of y = 1 as functions of the
independent variable x. Specifically, we compute estimated prob-
abilities P(y = 1|x, §), where 8 = (4, 5)i| the limiting value of an
intercept and slope estimate (a,, b,). The intercept term from the
random sampling logit estimation is corrected using the formula
(derived from Hsieh et al., 1985: 659):

. o()/H(1)
o G log (Q(O)/H(O))’
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TABLE 2
Estimated Probability of y = 1 from Various
- Asymptotic Estimates (X 100)

Estimation Methods
Unweighted Logit Weighted Logit
a Casel Case2 Casel Case?2
-2 51.0 14.9 50.4 15.0
(z=1) (z=0) (¢=1) (z=0)
-3 57.5 15.0 53.2 14.5
(z=2) (z=1) (z=2) (z=1)
-4 73.2 19.0 61.1 15.1
(z=3) (z=2) (z=3) (z=2)

NOTE: Probabilities were calculated from ssymptotic estimates. Case 1 and Case 2
are defined by varying the value of x. The x values were chosen as to make the true
probabilities of ¥ = 1 in the population 0.500 and 0.159 for the true probit model.
For mode! specifications, see Table 1 and the text.

where o* is the corrected intercept and a,, is the estimated
intercept. Otherwise, the estimates are not rescaled.

The results are given in Table 2. In Table 2, two values of x were
chosen, giving probabilities of y = 1 of 0.500 and 0.159, respec-
tively. These probabilities are computed under the correct model
and the true parameters. We observe that the random sampling
logit estimator leads to substantial overprediction in the case
a = -4, estimating 0.7832 and 0.190 instead of 0.500 and 0.159 in
the population. Estimated probabilities from the weighted logit
estimator are better—different from those in the population but
not very far from them. This is so because the weighted logit
estimator provides a best predictor of the probit function, within
the constrained class of logit models.

THE MONTE CARLO EXPERIMENT

Results of asymptotic analysis do not suffice to guide data
analysis. In practice, the sample size is finite, and the issue of
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efficiency can be important. In order to explore how the two
estimators perform in small samples, we conducted a Monte
Carlo experiment.

The Monte Carlo simulation experiment can be seen as an
extension of the previous asymptotic analysis. The design of the
experiment is simple: We repeatedly draw independent response-
based samples of a fixed size according to the model specifi-
cations described in the last section and obtain the weighted
maximum likelihood and random sampling maximum likelihood
logit estimates for each sample. The sample size varies from 100,
200, to 1,000. For each model and sample size specification, 1,000
repetitions are performed. The actual distribution of the 1,000
estimates provides the basis for inference regarding the behavior
of the estimators.

Table 3 presents the results of our analysis of the estimation of
the slope coefficient b. For each sample size, the mean, the
standard deviation, and the root mean square error (RMSE) of
each estimator are displayed. The root mean square error is given
because it is the measure that combines the bias and the variance
of an estimator. The asymptotic limits of the estimates are also
given for the purpose of comparisons.

From Table 3, we observe first of all that for samples of size
N = 1,000 both of the estimators have more or less converged to
their asymptotic values. In other words, the conclusions drawn
from the asymptotic analysis are directly relevant to data analysis
- when the sample size is as large as 1,000. In particular, the random
sampling logit estimator overall does not perform very well. For
the smaller sample sizes of N = 100 and N = 200, however, this
estimator is better than the weighted logit estimator by the RMSE
criterion. This illustrates the trade-off for small samples between
using an estimator that has larger asymptotic bias but smaller
variance, on the one hand, and one that has smaller asymptotic
bias but larger variance, on the other.

Because of the problem of rescaling, the results from Table 3
may be thought ambiguous. Following the approach of the last
section, we would like to compare the estimates in a different
way—comparing estimated probabilities of y = 1. For each
sample size, we calculate the estimated probabilities by using
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TABLE 3
Comparison of Estimates Under True Probit Models When
Samples Are Response-Based: A Monte Carlo Experiment®

Estimation Methods
Unweighted Logit Weighted Logit
N Me;ag_ St.Dev. RMSE Mean St.Dev. RMSE

|

i 100 103 0.22 023 1.02 023 023

I 200 101 0.14 015 099 0.15 0.16

i 1000 099 006 006 097 007 0.07
oo 098 0.0 002 096 000 004

100 1.18 0.25 0.30 1.15 0.33 0.36
200 1.15 0.17 0.22 1.09 0.21 0.23
1000 1.13 0.07 0.15 1.05 0.09 0.10
oo 1.12 0.00 0.12 1.05 0.00 0.05
a= —4¢

100 1.47 0.33 0.57 1.57 0.64 0.86
200 1.41 0.21 0.46 1.33 0.36 0.48
1000 ~ 1.36 0.08 0.37 1.21 0.14 0.25

00 1.35 0.00 0.35 1.18 0.00 0.18

a. Estimates of coefficient b are displayed. The true model is

yi =a+bx;te,
where a = b.- 1, x; ~ Nia, 1), ;~ N(O, 1), and x; is independent of ¢;. We observe
yi=1ity; >50,sndy; = 0 otherwise. N is the sample size. In the population the
ratio of y = 1 cases 10 y = O cases depends on the velue of a. in sl of our response-
based samples, we sampied equal number of cases of y = 1 and y = 0. For esch speci-

fication, 1,000 repetitions were performed. Estimates were rescaled to be comparable
to probit estimates.

b. This gives in populstion roughly 23.98% cases y = 1 and 76.02% cases y = 0.
¢. This gives in population roughly 7.87% csses y = 1 and 82.13% cases y = 0.
d. This gives in popuiation roughty 1.69% casesy = 1 and 98.31% cases y = 0.

estimates from 1,000 repetitions. In this way, we obtain 1,000
estimated probabilities for each specification.

Table 4 reports the means, standard deviations, and RMSEs of
these probabilities. As before, estimated probabilities from the
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TABLE 4
Comparison of Estimated Probability of y = 1 from Various
Estimates when the True Model is Probit (X 100)

Estimation Methods

" Unweighted Logit Weighted Logit
. N Mean S.D. RMSE Mean S0. RMSE Mean S.D. RMSE Mean S.D. RMSE

r= r.-0 r= r=0
100 320 76 79 M5 26 29 816 78 19 146 26 29
200 $1.7 S S4 M8 1T 20 812 53 54 149 18 20
1000 312 23 26 149 08 1.3 806 23 24 150 08 12,
x 510 00 10 149 00 10 504 00 04 150 00 09;

100 599 132 164 158 35 35 571 158 173 154 37 38!
200 SRt 99 130 153 23 24 348 114 123 148 23 25

1000 375 46 88 150 09 1.3 834 53 62 145 09 1.6
x 575 00 75 150 00 09 532 00 32 145 00 14
o-- 1
r -3 z=2 =3 z=2
100 7.1 163 30.1 24.2 131 155 723 2341 321 268 199 227
200 739 131 273 213 18 9.5 65.7 200 254 194 103 10.9
1000 73.1 6.2 23.9 192 28 43 6135 106 15.7 18.7 3.2 3.2
o 73.2 0.0 232 190 00 31 6ia 00 1.1 158.1 0.0 0.8

NOTE: Probabilities were calculated from Monte Carlo and ssymptotic estimates.
The x values were chosen as to make the trus probabiiities of y = 1 in the population
0.500 and 0.159. For mode! specifications, sse Table 3 and the text.

two logit estimates are presented. There are two cases with true
probabilities of 0.500 and 0.159. Inspection of the table shows
once again the trade-off between bias and precision in small
samples. In large samples, weighted logit estimation generally
yields superior results. In small samples, random sampling max-
imum likelihood performs somewhat better.

CONCLUSION

The logit specification is often chosen only for its convenience.
When this is the case, choosing the logit specification does not
permit the researcher to analyze response-based data as if they
were generated by a random sampling process. Application of
random sampling methods is proper onmly if the researcher
believes that the true response function takes the logit form.
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When the true response function is not logit, the random sam-
pling maximum likelihood logit estimator yields results that do
not describe the data in an interpretable way.

One solution to this problem is to apply the weighted maxi-
mum likelihood estimator of Manski and Lerman (1977). This
article demonstrates that the weighted maximum likelihood
estimator provides good results for reasonably large samples even
when the response function is misspecified. The weighted maxi-
mum likelihood analysis is preferable because it estimates a con-
strained best predictor of the binary response. Alternatively, the
researcher may apply a semiparametric method that avoids. the
need to specify the exact form of the response function.

APPENDIX

This appendix provides some information on computer programs.
The weighted maximum likelihood estimator of Manski and Lerman
(1977) can be implemented using any computer software with a maxi-
mum likelihood estimation routine that allows for weighting. Parameter

estimates can be obtained as follows: (1) calculate a weight variable that
equals

N, Ny
oQ) N fory=1 and Q(0) ~

otherwise, (2) specify the model to be estimated, and (3) estimate the
model, multiplying each observation’s contribution to the log-likelihood
by the appropriate weight.

In general, the covariance matrix of the estimated parameters
reported by the computer program performing this simple procedure is
incorrect. Sec Manski and Lerman (1977), Cosslett (1981a), and Hsich
ct al. (1985) for discussions of the correct covariance matrix. The
formulas appearing in the above references vary, depending on the
nature of the rescarcher's knowledge of Q() and whether N,/ N is fixed
by design. In the following, we will only discuss the simplest case, that is,
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when Q(j) is exactly known, and N;/N is allowed to vary around its
known limit H(j)(Manskiand Lerman, 1977: Amemiya, 1985: 322-328).

Let w(j) = Q(j)/ H(j). The asymptotic covariance matrix of the
estimator (6) solving equation 8 can be estimated by:

A"BA™ [13]
where
1 & dlogP(jjlx,8) alogP(j,lx, )
A=y 2 wl) —, Py (14]

N dlogP(jlx,8) dlogP(jx,8)
_ 1 N2 i i
B= % 2 w0) a6 26’ 3}

Notice that the B™' matrix is the covariance matrix usually reported by
the computer program performing a weighted maximum likelihood
estimation.

For the probit and logit models, the formula is simple. In the case
of the logit model, for example, dlog P/38 = §(1 - P). Computer codes
for obtaining the correct covariance matrix are available in Greene’s
LIMDEP manual (1986: 19.3-7). Below is an exampie implementing the
weighted maximum likelihood logit estimator in LIMDEP. Adaptation
to other standard computer software should be straightforward.

type ; Thisis to estimate a logit model via weighted ML $

read ;nrec=200 ;nvar=2 ;file=udiski:for 010.dat
;names(x1=y,x2=x2) ;format=(F2.0,F8.5)$

create ;if (y=1) cbswt=0.0787/0.5 ;(else) cbswt=0.9213/0.5§$

namelist ;x=one,x2 §

logit ;lhs=y ;rhs=x ;wts=cbswt ;keep=yfit ;matrix(b=b,H=H) §

create ;derivs=xyfit $

create ;derivs=derivs"2*cbswt $

matrix ;G=xdot(x,derivs) ;V=qfrm(G,H) ;V=sinv(V) ;stat(b,V) $

stop
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NOTES

1. For general discussions of response-based samples, sec Manski(1981) and Byc et al.
(1987). Other terms for “response-based sample™ are “choice-based sample™ (Manski and
Lerman, 1977) and “case-control sample” (Prentice and Pyke, 1979).

2. In log-lincar analysis, it is well-known that interaction terms are invariant to
changes in marginal distributions and are consequently not affected by response-based
sampling.

3. For simplicity, we consider the case in which x has an “ordinary™ density; that is, a
density with respect to Lebesgue measure. In fact, x can have discrete components. If so,
integrals appearing in the later equations should be changed to sums. No other changes are
needed.

4. Another casy-to-implement method is the Manski-McFadden (1981) conditional
maximum likelihood estimator. In the case of a logit model, this procedure and the
full-information maximum likelihood method 7 coincide. Thus it need not be considered
here.

5. We shall, for simplicity, assume that Q(j) is known exactly. In fact, it is enough that
one be able to estimate Q(j), say from an auxiliary random sample. See Hsich et al. (1985)
for details.

6. The appropriate correction is to add

, (/N
o8 Q(0)/A,

to the estimated intercept. Note that implementation of the correction requires knowledge
of the marginal population response probabilities Q( ).

7. Problem 12 can be written in the form of equation 11 but the expectation is not with
respect to the true population density. It is, rather, with respect to the misspecified density
in which the response probability is

P(i1x. 8*)H,/Q,
P(OIx,6°)H,]Q, + P(11x.0")H /0,

rather than P(j|x, 6*), and the marginal density of x is

(')[P(m 0 )H° H‘]
p(x x,0°)— +P(1ix.0°) —
Q, 0,

rather than p(x).
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8. To calculate these biases, the logit results have been multiplied by 3%/ 7. The logit
and probit models employ different scale normalizations. Whereas the standard normal
distribution has variance one, the standard logistic distribution has variance =3,

REFERENCES

AMEMIYA, T. (1985) Advanced Econometrics. Cambridge, MA: Harvard Univ. Press.

BISHOP, Y.M.M,, S. E. FIENBERG, and P. W. HOLLAND (1975) Discrete Multivar-
iate Analysis: Theory and Practice. Cambridge: MIT Press.

BYE,B. V., S.J. GALLICCHIO, and J. M. LEVY (1987) “Estimation of discrete choice
models in retrospective samples: application of the Manski and McFadden condi-
tional maximum likelihood estimator.” Soc. Methods & Research 15: 467-492.

COSSLETT, S. R.(1981a) “Efficient estimation of discrete-choice models,” pp. 51-111in
C. F. Manski and D. McFadden (eds.) Structural Analysis of Discrete Data with
Econometric Applications. Cambridge: MIT Press.

COSSLETT, S. R. (1981b) “Maximum likelihood estimator for choice-based samples.”
Econometrica 49: 1289-1316.

COX, D. R. (1970) The Analysis of Binary Data. London: Methuen.

EFRON, B. (1978) “Regression and ANOVA with zero-one data: measures of residual
variation.” J. of the Amer. Stat. Assn. 73: 113-121.

GORTMAKER, S. L. (1979) “Poverty and infant mortality in the United States.” Amer.
Soc. Rev. 44; 280-297.

GREENE, W, H. (1986) LIMDEP: User’s Manual.

HASTIE, T. (1987) “A closer look at the deviance.” Amer. Statistician 41: 16-20.

HSIEH, D. A,, C. F. MANSKI, and D. McFADDEN (1985) “Estimation of response
probabilitics from augmented retrospective observations.” J. of the Amer. Stat. Assn.
80: 651-662.

JOHNSON, N. L. and S. KOTZ (1970) Continuous Univariate Distributions—2. New
York: John Wiley.

MADDALA, G. S.(1983) Limited-dependent and Qualitative Variables in Econometrics.
Cambridge: Cambridge Univ. Press.

MANSKI, C. F. (1981) “Structural models for discrete data: the analysis of discrete
choice,” pp. 58-109 in S. Leinhardt (ed.) Sociological Methodology 1981. San Fran-
cisco, CA: Jossey-Bass.

MANSKI, C. F. (1986) “Semiparametric analysis of binary response from response-based
samples.” J. of Econometrics 31: 31-40.

* MANSKI, C. F. (1988) “Identification of binary response models.” J. of the Amer. Stat.
Assn. 83: 729-738.

MANSKI, C. F. and S. R. LERMAN (1977) “Estimation of choice probabilities from
choice-based samples.” Econometrica 45: 1977-1989.

MANSKI, C. F. and D. McFADDEN (1981) “Alternative estimators and sample designs
for discrete choice,” pp. 2-50 in C. F. Manski and D. McFadden (eds.) Structural
Analysis of Discrete Data with Econometric Applications. Cambridge: MIT Press.

MANSKIL, C.F.and T. S. THOMPSON (1989) “Estimation of best predictors of binary
response.” J. of Econometrics 40: 97-123.



302 SOCIOLOGICAL METHODS & RESEARCH

PRENTICE, R. L. and R. PYKE (1979) “Logic discase incidence models and case-control
studies.” Biometrika 66: 403-411.

Yu Xie is a doctoral candidate in sociology at the University 5{ Wisconsin—
Madison. He is studying entry into scientific careers by combining the 1962
and 1973 Occupational Changes in a Generation Surveys with 1962 and 1972
Postcensal Surveys of scientific and technical personnel.

Charles F. Manski is a Professor of Economics at the University of Wisconsin—
Madison. His recent book Analog Estimation Methods in Econometrics was
published by Chapman and Hall, 1988. His current research includes development
of dynamic choice models and study of schooling behavior.



