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Summary. We consider studies of cohorts of individuals after a critical event, such as an injury, with the
following characteristics. First, the studies are designed to measure “input” variables, which describe the
period before the critical event, and to characterize the distribution of the input variables in the cohort.
Second, the studies are designed to measure “output” variables, primarily mortality after the critical event,
and to characterize the predictive (conditional) distribution of mortality given the input variables in the
cohort. Such studies often possess the complication that the input data are missing for those who die shortly
after the critical event because the data collection takes place after the event. Standard methods of dealing
with the missing inputs, such as imputation or weighting methods based on an assumption of ignorable
missingness, are known to be generally invalid when the missingness of inputs is nonignorable, that is, when
the distribution of the inputs is different between those who die and those who live. To address this issue,
we propose a novel design that obtains and uses information on an additional key variable—a treatment or
externally controlled variable, which if set at its “effective” level, could have prevented the death of those
who died. We show that the new design can be used to draw valid inferences for the marginal distribution
of inputs in the entire cohort, and for the conditional distribution of mortality given the inputs, also in
the entire cohort, even under nonignorable missingness. The crucial framework that we use is principal
stratification based on the potential outcomes, here mortality under both levels of treatment. We also show
using illustrative preliminary injury data that our approach can reveal results that are more reasonable
than the results of standard methods, in relatively dramatic ways. Thus, our approach suggests that the
routine collection of data on variables that could be used as possible treatments in such studies of inputs
and mortality should become common.

Key words: Causal inference; Censoring by death; Missing data; Potential outcomes; Principal stratifica-
tion; Quantum mechanics.

1. Introduction
We consider studies that interview cohorts of individuals after
a critical event, such as injury or stroke, with the following
two characteristics. First, the studies are designed to mea-
sure “input” variables, which describe the period before the
critical event, and to characterize the distribution of the in-
put variables in the cohort. Second, the studies are designed
to measure “output” variables, primarily mortality after the
critical event, and to characterize the predictive (or condi-
tional) distribution of mortality given the input variables in
the cohort. Such studies, however, are often complicated by
the fact that the input data are missing for those who die
shortly after the critical event because the data are collected
after the event.

This problem, input data missing due to death, occurs com-
monly, for example, in studies of elders (Cornoni et al., 1993;
Reuben et al., 1995; Cohen et al., 2002), or victims of injuries
(e.g., MacKenzie et al., 2006). The goals we address for such
studies are how to estimate the inputs missing due to death,
and how to characterize the predictive (or conditional) distri-

bution of mortality given the input variables in the cohort.
Answers to these goals are important because, first, they can
be used to better alert the individuals and their physicians
about increases in risks, and second, they inform about the
pathways of such risks.

As a motivating example, consider the National Study
on the Costs and Outcomes of Trauma Centers (NSCOT;
MacKenzie et al., 2006). That study used hospital dis-
charge records to identify and enroll individuals who received
care for injuries. The first follow-up visit was scheduled at
3 months. During this visit, patients were interviewed about
their preinjury disability, as measured by “activities of daily
living (ADL).” It is of interest to evaluate the relation that
prior disability has to the risk of death following an injury.
However, some patients died as a result of injury, before
this first follow-up visit. Thus, the ADL values are missing
for these patients. If these missing past ADL values have
a different distribution than the observed past ADL val-
ues among survivors, standard methods cannot estimate that
relation.
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Table 1
Examples of studies with input data missing due to death

Population; original goal Measures of interest (time 0) Critical event (time 1)

Elders or sick; relate functional ADL, intense emotional stress, Stroke, falls,
measures to mortality intense physical activity myocardial infarction,

opportunistic infections
Youths; relate exposure measures Controlled substance use Injuries (e.g., crash)

to severe injury/mortality (e.g., alcohol, drug abuse)

Another class of examples arises in the evaluation of the
effect that a periodic exposure (e.g., to drug) has on the risk
of a critical event using a case-crossover design (Maclure,
1991). In its basic form, this design aims to measure, for
each one of a group of injury cases, the gap time between
the last exposure and the critical event, and a measure of
that person’s typical frequency of past exposure. A measure
of association between exposure and the critical event is then
defined by comparing the observed gap times to their distri-
bution that would be expected if the critical event had been
unrelated to the exposure process defined by the past fre-
quencies. In this design, even if we know the victims’ most
recent exposure to drugs (e.g., by blood measurement), the
frequency of past exposure becomes missing for those who
die as a result of severe injuries, and this missingness is
usually ignored (e.g., Vinson et al., 1995). As discussed be-
low, such missingness needs to be addressed by new and
more appropriate methods. Such examples are summarized in
Table 1.

Standard methods confronted with missing data from
death, as also noted by Zhang and Rubin (2003), can be classi-
fied into three types. The first type is concerned only with the
observed data (e.g., cause-specific hazards, dating to Prentice
et al., 1978; and partly conditional on being alive, Kurland
and Heagerty, 2005); these methods are not relevant to our
problem because they do not attempt to estimate the missing
data. The second type of method assumes ignorability (Rubin,
1976) of missing data and essentially replaces them with data
matched from fully observed strata, either across time from
the same person, or across people for the same time (e.g.,
McMahon and Harrell, 2001; Lin, McCullouch, and Mayne,
2002) or both; these methods are known to be inappropriate
when the distribution of data missing due to death differs from
that in observed strata (Rubin, 1978). The third type posits
nonignorable assumptions relying simply on the parametric
structure of models (e.g., Fairclough, Peterson, and Chang,
1998); these methods are sensitive to the parametric assump-
tions because, without such assumptions, the distributions of
interest are not identifiable unless additional design structure
is introduced.

We address the problem’s goals from a combination of de-
sign and analyses perspectives. First, we recognize that the
problem is related to, but differs from, the problem of cen-
soring by death discussed in Rubin (2000), Frangakis and
Rubin (2002), and developed by Zhang and Rubin (2003).
The goal of the latter problem is to compare treatments on
potential outcomes (Neyman, 1923; Rubin, 1974, 1978) when
some patients in either treatment die. In that problem, the

future outcome of a person who dies is “missing,” not because
it exists and is unobserved, but because it is not defined. Be-
cause the patients who die may not be comparable between
the two treatments, death creates the need to define mean-
ingful treatment effects on the outcomes. Such effects are well
defined if we restrict attention to patients who would survive
no matter which treatment they would receive (Rubin, 2000)
rather than to the larger group of patients who are observed
to survive. This group of patients, who would survive no mat-
ter the treatment, is a special case of a “principal stratum”
(Frangakis and Rubin, 2002), that is, here, a stratum defined
by a patient’s joint potential outcomes of death under the two
treatments. Thus, in that case, the principal strata are criti-
cal for defining treatment effects. In the present problem, the
variable of interest is a well-defined input preceding death,
and is missing because the attempt to record it takes place
after death. The key, from the design perspective, then, is
to recognize that the missing data of an individual who dies
would be observed “under explicit alternative conditions for
which the same individual would have survived.” Formalizing
this, we show that it is also important here for the goal of
estimating the missing information, that: (1) the design finds
data on factors (e.g., treatments) that (1a) could have pre-
vented deaths and (1b) were assigned to the individuals after
the time when the inputs of interest became defined but be-
fore the time of death; and (2) these data be analyzed using
principal stratification.

In the next section, we formulate more explicitly the prob-
lem and its goals, and formalize the proposed design with
data on externally controllable factors, such as treatments,
that can prevent deaths. In Section 3, we describe a method
that can address our goals using the data from the proposed
design and the framework of principal stratification. We show
that the proposed method allows the distribution of miss-
ing inputs to differ systematically from the distribution of
the observed inputs, yet this method is able to estimate the
distribution of the missing inputs. In Section 4, we demon-
strate using preliminary data from NSCOT including trans-
port time to hospital as the externally controllable factor,
that our design and analysis method can uncover results that
are dramatically different and more plausible than those of
standard methods. Section 5 provides extensions of the pro-
posed methods in more general situations. Section 6 discusses
the commonalities and differences between this and other re-
lated uses of principal stratification. Section 7 concludes with
remarks, including connections between this new, interven-
tional approach to missing data and the principles of quantum
mechanics.
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2. Design Using Principal Stratification
2.1 Initial Design and Goals
Consider a cohort of individuals who had a critical event (at
time say t = 1), such as an injury (e.g., crash). We are inter-
ested in learning about a variable A that takes its value at a
time, say t = 0, before the critical event and so is called an
input. For example, A can be ADL that the person cannot
perform, or exposure to drugs. To record A, we schedule an
interview at a time, say t = 2, after the critical event, e.g., an
interview at discharge from the hospital. However, a subset of
individuals die before the interview, as a result of the critical
event; for those individuals, the value of A still exists, because
it occurred before death, but becomes missing because there
is no interview.

Throughout, we use i to index an individual. Let Ai be
the value of A for individuals at t = 0; and let Sobs

i = 1 for
surviving individuals at t = 2, and 0 otherwise. This initial
setting is shown in Figure 1(a).

Goals. We wish to address the following: (a) Estimate the
distribution of the past input Ai for the people who died with-
out reporting them; and (b) Estimate quantities such as pre-
dictive distributions and associations that are defined based
on the distribution of all values Ai , missing and observed,
for example, the prediction of death based on Ai . The first
goal is important for characterizing the distribution of the
inputs for all individuals. The second goal differs from pre-
dicting death from the observed inputs in this study, P (Sobs

i =
0 | {Ai : Ai is observed}), which is by definition deterministi-
cally 0 and is of no interest. Goals of type (b) are important
because they inform us about the degree to which the past in-
puts Ai in the original cohort are actually related to death (or
to the critical event using additional data from people without
that event). Because of the deaths, the inputs A are not all
reported in this study, so these relations need to be estimated
indirectly. These relations should suggest better monitoring
methods in subsequent studies, which would alert physicians
and individuals about sudden increases in the risk of death.
Also, goals (b) contribute by helping medical research un-
derstand the pathways through which those inputs relate to
critical events and death.

2.2 New Design Elements and Principal Strata
Consider the following additional design elements:

(i) For all individuals, we find and record a factor or treat-
ment (labeled Zi ) that was assigned externally (i.e.,
by a person or process other than the individual), and
a level of which could have prevented death for those
who died. For this factor, let z = 0 denote a standard
level, and z = 1 denote the more effective level. For
example, for injuries, such a “treatment factor” can be
the transport time (long or short) from the time of in-
jury to arrival at the hospital or to surgery, whereas for
strokes or myocardial infarctions, such a factor can be
the prompt administration of a thrombolytic drug.

(ii) We also record covariates Xi that were used to decide
the level Zi of the factor for the individual. The vari-
ables Xi may correlate with the input Ai .
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Figure 1. (a): Initial design on input variable A and sur-
vival status Sobs, matched for past covariates; (b): New design
based on a controllable factor. Dashed boxes indicate princi-
pal strata with respect to survival. The presentational order
from left to right of (principal strata (Si (0), Si (1)) and input
Ai ), controllable factor Zi , and observed survival Sobs

i , which
determines measurement or no measurement of the input Ai ,
is also the time order of definition from earliest to latest vari-
able. Other covariates defined before the controllable factor
can be used as in Section 5.2.

The level of factor z to which a particular individual is as-
signed can affect the future of that individual, although we
assume it cannot affect the future of a different individual
(no interference, Rubin, 1978; Cox, 1992). For an individ-
ual i, denote by Si (z) the potential survival outcome (Rubin,
1978) that indicates the survival status if the individual is as-
signed level z of the factor. It is then important, as in Rubin
(2000), Frangakis and Rubin (2002), and Zhang and Rubin
(2003), to consider the principal strata of survival, that is,
the strata of the individuals with respect to the joint values of
(Si (0), Si (1)). These are generally the following: (1) individu-
als who would survive no matter the level of z, that is, Si (0) =
Si (1) = 1; (2) individuals who would die under the standard
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level but would live under the effective one, that is, Si (0) =
0 and Si (1) = 1; (3) individuals who would die no matter
the level, that is, Si (0) = Si (1) = 0; and (4) individuals who
would survive under the standard level but would die under
the effective treatment, that is, Si (0) = 1 and Si (1) = 0.
We denote the principal stratum of individual i by Pi and
label the above four possible strata as “always survivors,”
“protectable,” “never survivors,” and “defiers,” respectively,
combining terminology of Angrist, Imbens, and Rubin (1996),
and Gilbert, Bosch, and Hudgens (2003) for vaccines.

Our main argument is that addressing the goals (a) and
(b) can be helped by recording and using data on such a
factor z (there can be more than one choice) that can justify
plausible assumptions about the assignment of Zi and about
the principal strata.

A simple example reveals how our structure can help us
achieve our goals. Consider a factor z that can justify the
following two assumptions (for extensions see Section 5):

Assumption 1: Ignorable assignment of external factor:
The levels Zi are independent of (Ai , Pi ) conditionally on the
variables Xi that were used for assignment.

Assumption 2: Preventability of deaths from external fac-
tor: Individuals are either Pi = “protectable” by the effective
level (z = 1) of the factor, or else “always survivors.”

Assumption 1 is plausible when we choose z and Xi so that
conditionally on Xi the reasons for the remaining variability
of Zi are independent of the individuals’ health prior to the
critical event. For example, we can ask physicians to tell us all
the variables they used to decide assignment of a treatment
z. So, the external assignment of z makes its ignorability
achievable, whereas this is not true for an assumption of
“ignorability of death,” which is typically made by the
standard methods (Section 1). Note that, by definition, the
values of Ai and Pi are not affected by the actual treatment
that is assigned (Frangakis and Rubin, 2002). The second
assumption excludes “never survivor” and “defier” patients,
and is related to the monotonicity assumption in other
settings (e.g., Angrist et al., 1996). Preventability, when
combined with ignorability, is testable from the observed
data, because under these assumptions we must observe
that among individuals within levels of Xi and assigned
the “effective” treatment, all survive, whereas among those
assigned the standard treatment some die and some survive,
as in Figure 1(b). More generally, some notion of both, the ig-
norability of the controllable factor, and a type of monotonic
effect of that factor on the reason of missing outcomes (here

mortality) are critical for using this design. Nevertheless, the
preventability assumption is more flexible than it originally
appears when made within levels of the covariate strata Xi .
The preventability Assumption 2 can also be relaxed to allow

for “never survivors” as discussed in Section 5.1. We now show
how the above design addresses our goals.

3. Estimability of Input Data Missing Due to Death
3.1 Distribution of Missing Input Data
For the observed data, we assume without loss of generality
that we are already within covariate strata Xi = x; so, for
brevity we omit the explicit conditioning on Xi in the nota-
tion of the distributions below. The possibly missing input
Ai is taken as an indicator for poor functional ability (e.g.,
dichotomized ADL = 1 for poor status).

Consider first the goal of estimating the distribution of the
missing functional inputs, P (Ai = 1 | Sobs

i = 0, Zi = 0). The
above ignorability of the assignment of the prevention factor
levels Zi reflects that, conditionally on the variables Xi , and
on which we have already stratified, the assignment of Zi bal-
ances all other covariates, including the input Ai , which is
a covariate that took its value before the prevention factor
Zi was assigned, even though assignment of Zi preceded the
time when Ai was to be measured. In other words, because
Ai is a covariate and Zi is effectively randomized (given Xi ),
the proportion P (Ai = 1 | Zi = 0) of poor inputs among in-
dividuals assigned the standard prevention level of z equals
the proportion P (Ai = 1 | Zi = 1) among those assigned the
effective prevention level. Because the former group includes
both individuals with observed and missing values, we have
that:

P (Ai = 1 | Zi = 1)

= P (Ai = 1 | Zi = 0)

=
∑

s=0,1

P
(
Ai = 1

∣∣Sobs
i = s, Zi = 0

)
P

(
Sobs

i = s
∣∣Zi = 0

)
.

(1)

From the observed data, as Figure 1(b) shows, we can es-

timate directly the proportion P (Ai = 1 | Zi = 1) of people
who had had poor function among those assigned the effective
level of z. The equality in (1) then implies that we can also es-
timate the proportion P (Ai = 1 | Zi = 0) of people who had
had poor function among those assigned the standard level
of z. Moreover, Figure 1(b) shows that we can also directly
estimate from the observed data: the proportion P (Sobs

i =
1 | Zi = 0) of survivors among individuals assigned the stan-
dard z; and the proportion P (Ai = 1 | Sobs

i = 1, Zi = 0) who
had poor function among those who survived after being as-
signed the standard level of factor z. It follows then, from (1),
that the distribution of missing past inputs can be expressed
as

P
(
Ai = |Sobs

i = 0, Zi = 0
)

=
P

(
Ai = 1 |Zi = 1

)
− P

(
Ai = 1 |Sobs

i = 1, Zi = 0
)
P

(
Sobs

i = 1 |Zi = 0
)

P
(
Sobs

i = 0 |Zi = 0
) . (2)

Therefore, we have reduced the unknown distribution of miss-
ing input data to an expression, the right-hand side of (2),
that involves quantities that can be directly estimated as
discussed above. This calculation is related to the instru-
mental variables’ equations of the effect of a treatment on
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posttreatment outcomes in a trial with noncompliance (Im-
bens and Rubin, 1997). However, the context and goal of the
problem here are different, and this parallel arises from the
more fundamental commonality of “principal stratification”
shared between the two types of problems (see Section 6).

3.2 Relation Between Input and Mortality
The ability to estimate better the missing data allows us to
also examine better relations between those data and clini-
cal variables. As an example, we show here how we can esti-
mate the degree to which the input Ai predicts death. Because
death depends on the principal strata Pi and the level of the
prevention factor, it is important to examine if the input Ai

predicts the principal strata of death. This would indicate
that Ai predicts the underlying predisposition of a person to
die.

Specifically, we wish to estimate:

P{Si(0) = 0 | Ai = a} =
P{Si(0) = 0}P{Ai = a |Si(0) = 0}

P (Ai = a)
,

(3)

and compare (3) with a = 0 and 1. From the top of (1), we
have that P (Ai = 1) equals the directly estimable propor-
tion P (Ai = 1 | Zi = 1) under the effective prevention level.
Moreover, from ignorability of treatment assignment with re-
spect to the principal strata, we have that the protectable
patients {i : Si (0) = 0} are balanced between the levels of z
(all probabilities are implicitly given Xi ), and so P{Si (0) =
0} in the right-hand side of (3) equals the directly estimable
proportion P (Sobs

i = 0 | Zi = 0) of patients who die under the
standard prevention level, where the principal strata are ob-
served (see Figure 1(b)). Also by ignorability, the proportion
P{Ai = a |Si (0) = 0} of protectable patients who have input
a, involved in the right-hand side of (3), is also balanced be-
tween the levels of z and so equals the proportion of patients
with input a among those who die in the standard prevention
level, i.e., P (Ai = a | Sobs

i = 0, Zi = 0), where the latter is
estimable from (2). These arguments show estimability of the
proportions in (3). Using these arguments to substitute the
right-hand side of (3) with estimable quantities based on (2),
we can express the relative risk of being a protectable (not
always survivor) patient when having poor versus good input
Ai as

P{Si(0) = 0 | Ai = 1}
P{Si(0) = 0 | Ai = 0} =

P (Ai = 0 | Zi = 1)

P (Ai = 1 | Zi = 1)

×
P (Ai = 1 | Zi = 1) − P

(
Ai = 1

∣∣Sobs
i = 1, Zi = 0

)
P

(
Sobs

i = 1
∣∣Zi = 0

)

P
(
Sobs

i = 0
∣∣Zi = 0

)
− P (Ai = 1 | Zi = 1) + P

(
Ai = 1

∣∣Sobs
i = 1, Zi = 0

)
P

(
Sobs

i = 1
∣∣Zi = 0

) ,

(4)

where the quantities in the right-hand side of equation (4) are
all directly estimable as described in the paragraph following
(1).

4. Demonstration
We return to the NSCOT study (MacKenzie et al., 2006) on
injuries described in Section 1. To illustrate the contrast be-
tween our approach to missing data and standard approaches,
we consider patients who have sustained injuries with a rela-

tively low (Xi = 0) or high (Xi = 1) severity (n = 354, 135
respectively). The follow-up interview is scheduled 3 months
after the injury to measure by questionnaire the functional
status (Ai = 1 for poor ADL) that existed before injury, and
this is missing if the injured person i dies before the interview
as a result of the injuries. The prevention factor z we use here
is based on the time it took to transport the injured person
to the hospital.

Regarding the assumption of ignorability of the assignment
mechanism of the transport time to hospital, the two main
reasons for variability of this time are (a) the severity of the
injury as judged by medical personnel—more severe injuries
are attempted to be transported faster; and (b) external rea-
sons such as time of day, distance, traffic, or weather, that
prevent fast transport, but that are themselves in principle
not directly related to the person’s health before injury. It is
therefore plausible to assume ignorable assignment of Zi af-
ter conditioning on the measured severity of injury Xi used
to decide Zi : among individuals of the same injury severity
Xi (high or low, see Table 2), those transported slowly are
assumed to have the same distributions of past ADL Ai and
principal strata Pi as the individuals transported quickly. Of
course, one may wish to adjust for additional levels of covari-
ates to remove possible remaining confounding, for example,
using the approach of Section 5.2, but the principles for those
analyses remain the same. The assumption that quick trans-
portation to hospital can prevent an important proportion of
deaths is supported both by literature for other critical events
(e.g., GISSI, 1986), and empirically by our data: within either
of our strata (high or low) of injury severity Xi , there were
no deaths for injuries delivered to the hospital within 10 min-
utes, although there were 19% deaths for patients with a high
injury severity delivered later than 10 minutes and 5% deaths
for patients with a low injury severity delivered later than 10
minutes. Based on the above, Table 2 gives relevant summary
proportions, directly computed from the data. We treat these
summaries here as population proportions, because they indi-
cate plausible results for each method. Inferential statements
were not planned for and so do not achieve statistical signif-
icance, because the study had not been planned to use the
new design.

Focusing first on high injury severity, there were P (Zi =
1) = 8% of patients transported quickly; among the patients

who were transported slowly, 81% survived, i.e., P(Sobs
i =

1 | Zi = 0) = 81%; among those transported quickly, all sur-
vived, i.e., P (Sobs

i = 1 | Zi = 1) = 100% (not shown); of those,
there were 9% who had poor ADL before injury, i.e., P (Ai =
1 | Zi = 1) = 9%; and among those who survived after be-
ing transported slowly, 5% had poor past Ai , i.e., P (Ai =
1 | Sobs

i = 1, Zi = 0) = 5%. Then, the approach that would
estimate the protectable patients’ missing data distribution
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Table 2
Demonstration of design using injury data from NSCOT

P (Ai = 1 | Sobs
i = 0, Zi = 0) with the distribution of

observed data after matching on slow time Zi = 0 would
give 5% poor function. On the other hand, an approach
that would estimate the missing data distribution with the
observed data without matching on time would give P (Ai =
1 |Sobs

i = 1) which equals
∑

z
P (Ai = 1 | Sobs

i = 1, Zi =

z)
P (Sobs

i
=1|Zi=z)P (Zi=z)∑

z′ P (Sobs
i

=1|Zi=z′)P (Zi=z′)
, and which, using the information

given in Table 2, gives 5.4%. More generally, the result of
the standard methods is bounded to be between the directly
observed P (Ai = 1 | Sobs

i = 1, Zi = z), for z = 0, 1 (here,
between 5% and 9%), as a convex combination of the two.

With the new method, however, the missing proportion of
poor past function for protectable patients is allowed to be
different from the observed strata. In particular, from (1),
the missing proportion P (Ai = 1 | Sobs

i = 0, Zi = 0) must
be such that when mixed with the proportion of P (Ai = 1 |
Sobs

i = 1, Zi = 0) = 5% of poor past function for always sur-
vivors, the result should be the proportion of P (Ai = 1 | Zi

= 0) = P (Ai = 1 | Zi = 1) = 9% observed for all patients
transported quickly to the hospital (Figure 1(b)). The fact
that, by (1), this is a convex mixing based on the probabilities
P (Sobs

i = s | Zi = 0), for s = 0, 1, implies that the missing
proportion P (Ai = 1 | Sobs

i = 0, Zi = 0) of poor past function
for the protectable patients must be higher than the mixture,
P (Ai = 1 | Zi = 1) = 9%. Using (2), the missing proportion
P (Ai = 1 | Sobs

i = 0, Zi = 0) is {9% − (5%)(81%)}/(100% −
81%) = 26%. This shows that the actual result can be es-
timable and substantially different from those of the standard
methods. Note that this proportion is in line with a hypothe-
sis that those who died had generally poorer past ADL than
the survivors. Analogous comparisons are obtained for injuries
with low severity. Finally, the larger proportions of poor ADL
for low versus high injury severity is in accordance with the
hypothesis that individuals who sustain injuries of light sever-
ity and who, nevertheless, need hospitalization, were more frail
before the injury than individuals who get hospitalized after
sustaining a severe injury.

The relative risk in (4) is implicitly assumed to equal 1 by
the standard method that replaces the missing data distribu-
tion P (Ai = 1 | Sobs

i = 0, Zi = 0) with that of the observed

data after matching on the prevention level, that is, with
P (Ai = 1 | Sobs

i = 1, Zi = 0). With the new method, however,
and the empirical proportions of Table 2, the relative risk in
(4) is estimated to be 13.7 and 3.6, for low and high injury
severity, respectively. This means that, even after conditioning
on observed strata, the possibly missing functional ability is
an important predictor of the underlying ability of a patient
to survive the injury when transportation takes a standard
time to the hospital. The first implication is that follow-up,
e.g., of individuals with history of poor functionality, should
use new designs (e.g., based on automated reporting devices)
to make sure that some dimensions of functional ability be
measured at higher frequency. This would give better pre-
diction for which patients transition to high risk for death
from a critical event. The second implication is that sudden
changes to low functional ability inputs should be examined
medically to understand and address the pathways through
which these inputs predict death from injury even in the short
term.

5. More General Role of New Methods
5.1 Partial Preventability
The new methods are important also for more general input
data, designs, and assumptions. A plausible prevention factor
may partly, but not fully, prevent death. For example, prompt
delivery of thrombolytic drugs prevents death after stroke in
some but not all cases (GISSI, 1986). More specifically for
such settings, we consider an external factor z that satisfies
no interference and Assumption 1, as in Section 2.2, and a
generalization of Assumption 2:

Assumption 3: Partial preventability of deaths from ex-
ternal factor: Individuals are either Pi = “never survivors,”
“protectable,” or “always survivors.”

For never survivors—those who would not survive no mat-
ter the factor’s level—the observation of outcomes then re-
mains essentially undefined just based on this factor, and
so is not estimable without further assumptions. So the
goal in this setting is limited to the estimation of the dis-
tribution of missing inputs for protectable patients under
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the standard level of assignment, which equals P (Ai | Pi =
protectable) by Assumption 1. Standard methods cannot es-
timate correctly this distribution, as they cannot do so in
the setting given in Sections 2 and 3. Yet we show be-
low that this distribution is still estimable without further
assumptions.

To see this, note that the distribution of observed inputs
under the effective factor level, as in Section 2.2, is still a
mixture of the distribution among protectables and always
survivors. Letting p, a stand for protectables and always
survivors, respectively, we then have

P
(
Ai = 1

∣∣Sobs
i = 1, Zi = 1

)

=
∑

q=p,a

P
(
Ai = 1

∣∣Pi = q, Sobs
i = 1, Zi = 1

)

×P
(
Pi = q

∣∣Sobs
i = 1, Zi = 1

)

=
∑

q=p,a

P (Ai = 1 | Pi = q) × P (Pi = q)/P (Pi ∈ {p, a}),

(5)

where the last equality for the first summand arises first, be-
cause Sobs is a function of P and Z, and then because A, P is
independent of Z, by Assumption 1.

To recover the target of interest, P (Ai =1 |Pi = p),
from (5), note that, because among the patients assigned
the effective level Zi =1, those who survive are the pro-
tectables and always survivors, the proportions P (Sobs

i =
1 |Zi =1) and P (Pi ∈ {p, a}) are equal. Moreover, be-
cause among those assigned the standard level, Zi =0,
those who survive are always survivors, it follows
that the proportions P (Sobs

i =1 |Zi =0) and P (Pi = a)
are equal, and the distribution of input data P (Ai =1 |Pi = a)
equals the directly estimable distribution P (Ai =1 |Sobs =1,
Zi =0). By substituting these in (5) and after some rear-
rangement of terms we find that the target distribution
satisfies

P (Ai = 1 | Pi = p)

=
P

(
Ai = 1 |Sobs

i = 1, Zi = 1
)
P

(
Sobs

i = 1 |Zi = 1
)
− P

(
Ai = 1 |Sobs

i = 1, Zi = 0
)
P

(
Sobs

i = 1 |Zi = 0
)

P
(
Sobs

i = 1 |Zi = 1
)
− P

(
Sobs

i = 1 |Zi = 0
) ,

The last expression, although similar to (2) for full pre-
ventability, is different, first, in the left side of the numerator,
which now also measures the likelihood of staying alive after
assignment to the effective level Zi =1, and in the denomina-
tor, which, instead of P (Sobs = 0 |Zi = 0), now expresses the
proportion of protectables in the case of partial preventability.

The above result means that for the subset of patients that
are protectable or always survivors we can still assess the ig-
norability of missingess of data, and also find the direction
along which its violation occurs (e.g., if such input data for
those who died were higher on average than the observed
ones). Thus in such more general settings, the importance
of the new methods is essentially intact for addressing the
scientific goals.

5.2 Modeling Covariates
Suppose we still make Assumptions 1 and 3, but we first wish
to condition on multiple, and possibly continuous, covariates
Xi , and that to do so, we model the distribution of the princi-
pal strata of survival and of a continuous input given principal
strata by parametric functions

l(P)
(
q, x, β(P)

)
:= P

(
Pi = q | Xi = x, β(P)

)
, and

l(A)(a, q, x, β(A)) := P
(
Ai = a | Pi = q,Xi = x, β(A)

)
, (6)

where the last function is defined only for q = protectable,
or always survivor. Denote by P(Zi, S

obs
i ) the set of possible

principal strata as a function of the observed level Zi and sur-
vival status Sobs

i : if Zi = 0 (standard) and Sobs = 1 (alive),
then P(Zi, A

obs
i ) = {always survivor}; if Zi = 0 and Sobs =

0 (dead), then P(Zi, S
obs
i ) = {protectable, never survivor}, if

Zi = 1 (effective) and Sobs = 0 (dead), then P(Zi, S
obs
i ) =

{never survivor}, and if Zi = 1 and Sobs = 1 (alive), then
P(Zi, S

obs
i ) = {protectable, always survivor}. Then the likeli-

hood of the collection of data

Xi, Zi, S
obs
i , and Ai if Sobs

i = 1,

over independent individuals, conditional on the covariates
and the observed factor levels, is

Likd
(
β(P), β(A)

)

=
∏

i

∑

q∈P(Zi,Sobs
i

)

l(P)
(
q,Xi, β

(P)
)
·
{
l(A)

(
Ai, q,Xi, β

(A)
)}Sobs

i .

(7)

Under this setting, we can more generally express a quantity
of interest as a function Q(β(P), β(A)) of the parameters, which
can then be estimated by using likelihood or Bayesian meth-
ods to estimate the parameters from (7). Semiparametric
methods, as discussed by Scharfstein, Rotnitzky, and Robins
(1999) in general, and by Gilbert et al. (2003) for an appli-
cation of principal stratification to vaccine trials, are also
of interest. The fact that these quantities would be identifiable

by our method even without the models in (6) if samples were
large enough means that the results should not be sensitive
to the particular parametric models, as long as they are flex-
ible. Moreover, we can also show better estimation of general
quantities of importance in Table 2, such as for associations
using case-crossover designs.

6. Related Problems
The design and structure of principal stratification we pro-
posed for this problem, “inputs missing due to death,” has
commonalities and also differences with the structure of two
other problems where studies assign a treatment to exam-
ine its effect on an outcome. The first problem, “treatment
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noncompliance,” deals with subjects who do not comply with
the assigned treatment, and its structure with principal strata
was discussed by Imbens and Rubin (1997). The second prob-
lem, “outcomes censored by death” (see Section 1), deals with
subjects who die before the intended future outcome is mea-
sured, and its structure with principal strata has been dis-
cussed by Rubin (2000), Frangakis and Rubin (2002), Zhang
and Rubin (2003), and, with adaptation to HIV vaccines, by
Gilbert et al. (2003).

The common structure across these problems is centered
around a factor that can be thought of as controllable, in
the sense that its assignment is assumed ignorable. All three
problems also have factors whose values are measurable after
the controllable factor is assigned, namely postcontrollable
(or endogenous) factors; and factors whose values are defined
(but not necessarily measurable) before the controllable fac-
tor is assigned, namely precontrollable factors. The latter in-
clude all potential outcomes of the postcontrollable factors,
and, therefore, include principal strata, that is, crossclassi-
fications of subjects by some subset of potential outcomes.
The three problems also have differences, in their structure,
their goals, and in the role that principal stratification plays
in addressing these goals.

In the problem with “treatment noncompliance,” the con-
trollable factor is the treatment assignment; the postcontrol-
lable factors are the observed treatment received and the out-
come; and the precontrollable factors are the potential val-
ues of the treatment received and of the outcome. Of par-
ticular importance is the principal stratum of “compliers,”
that is, the subjects for whom the potential values of treat-
ment received are the same as the treatment assigned, for all
assignment levels (Imbens and Rubin, 1997). In this prob-
lem, the principal stratification helps to formulate and, un-
der assumptions, estimate the effect of treatment assignment
(or intention to treat) on the outcome among the compliers.
This goal is important because for compliers, the experimen-
tal comparison of outcomes among the levels of the controlled
assignment is also a comparison among the different levels of
treatment received.

In the problem with “outcomes censored by death,” the
controllable factor is again the treatment assignment; the
postcontrollable factors are the observed survival status, and
the observed outcome if the person survives; and the precon-
trollable factors are the potential values of the survival and of
the outcome. Here, a principal stratum of particular impor-
tance is that of “always survivors,” defined as in Section 2.
Principal stratification helps formulate and estimate the ef-
fect of treatment assignment on the outcome among always
survivors. This goal is important because always survivors
are the only subjects for whom potential outcomes are well
defined for all assignment levels.

In the problem with “inputs missing due to death,” the
controllable factor is one that affects survival after a critical
event, that is, an event after which, under standard conditions,
there is substantial likelihood of death, such as injury or stroke;
the postcontrollable factors are the observed survival status
of the person, which determines measurement (if alive) or no
measurement (if dead) of the input that occurred before the
critical event; and the precontrollable factors are the inputs

of interest and the principal strata of survival that take their
value before the measurement of the critical event. Here, the
“protectables” are a principal stratum of particular impor-
tance. In this problem, the principal stratification provides
the framework for appropriately positing assumptions, such
as those of Sections 2, 3, or 5, that allow estimation of the dis-
tribution of the missing inputs for protectable patients. This
goal is important because it better characterizes the differ-
ences between observed and missing inputs, and helps better
understand the role that the inputs have for predicting mor-
tality from the critical event.

7. Discussion
We proposed a framework for addressing data missing due
to death by obtaining and using data and explicit assump-
tions about a treatment assignment mechanism that could
cause missing values to become observed if different levels of
the treatment had been assigned. Thus, although a relation
between causal inference and missing data has been obvious
since Neyman (1923) and Rubin (1974, 1976, 1978), the pro-
posed framework for data missing due to death emphasizes
a particular order for understanding these concepts: causal
inference with potential outcomes is not just a special case
of missing data, but is more fundamental than missing data
(see also Rubin, 1987, 2005). Specifically, in the framework we
proposed, data can only be regarded as having a missing value
if an explicit intervention can be proposed that would provide
us with that value. This principle for missing data, therefore,
follows the principle of quantum mechanics, by which a mea-
surable value of a physical quantity is only defined in terms of
an explicit intervention that can be applied in order to pro-
vide that value. This parallel of principles is also reflected in
the parallel of primary elements of the two frameworks—the
complex wave function in quantum mechanics, and the prin-
cipal strata of potential outcomes in the proposed framework
for missing data: these primary elements give rise to the ob-
served data by specific rules, but the primary elements are
not themselves directly observable, providing an additional
dimension that empowers the frameworks to better explain
observations.

The use of an intervention factor to address missing data
has the limitation that there can be settings where such a
factor can exist, but still not be available in the design. This
can be so especially because such factors are not, at present
systematically recorded for the purposes of addressing miss-
ing data, because their role in this problem had not previ-
ously been demonstrated. For such cases where the missing
values are well defined but where design features do not allow
their identifiability, sensitivity analyses can be implemented
(e.g., Rubin, 1977; Manski, 2003). Our results and illustration,
though, demonstrate that using such intervention factors can
improve the evaluation of and utility of studies with missing
data due to death, and so can be the first step to a more
systematic recording of such factors.

It will also be of interest to combine the setting discussed
here, where possible deaths of patients can imply that their
unobserved past is different from pasts that are observed, with
the settings considered by Rubin (2000) and Zhang and Ru-
bin (2003). In those settings, patients who die could have



Principal Stratification and Missing Inputs 649

had also a different future outcome trajectory from observed
trajectories, under conditions that would have prevented their
death. Developing methods to answer such combined ques-
tions is important for evaluating, for example, not only the
potential benefit of prevention programs for saving lives, but
also the programs’ effects on the quality of patients’ lives, and
the relation of these effects to past input variables.
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We are grateful for the opportunity to discuss this article. In
this discussion, we (i) question the plausibility of the authors’
substantive assumptions, (ii) discuss the authors’ choice of
scientific goals and their attainability, (iii) comment on sta-
tistical issues, and (iv) describe a sensitivity analysis approach
to the authors’ problem.

(i) Substantive Assumptions. In Section 3, the authors
show that under no interference and assumptions (I) (A, S(0),
S(1)) ⊥⊥ Z |X, C = 1, where C is the binary indicator of the
critical event, e.g., car accident, and (II) S(1) = 1 w.p.1, an
application of Bayes’ Theorem implies identification of the
joint distribution f(A, S |C = 1, X) from the distributions
f(A |S = 1, C = 1, X) and f(S |C = 1, X).

Assumption 2 stipulates a dichotomous treatment factor Z,
which is guaranteed to prevent death. In the authors’ exam-
ple, Z was transport time to hospital, a continuous variable
that was dichotomized at 10 minutes. As the authors recog-
nize, treatments Z satisfying (II) rarely exist. For instance, a
fraction of individuals injured in car accidents die almost im-
mediately. For them, a “transport time to hospital” of less
than 10 minutes cannot prevent death. Yet, the empirical
analysis of Section 4 reports that no deaths occurred in sub-
jects with transport times of less than 10 minutes. Possible
explanations for the lack of deaths in the rapidly transported
would include (i) ambulance paramedics appropriately trans-
port victims found dead at the scene less quickly than injured
survivors, (ii) the chosen cutpoint of 10 minutes was data
driven, and (iii) the number of high-risk rapidly transported
subjects (i.e., 11) was sufficiently small that all survived by
chance.

In Section 5, the authors replace assumption (II) with the
monotonicity assumption that Z cannot cause death. How-
ever, it can be difficult to find variables Z that satisfy mono-

tonicity. For instance, the authors suggest that thrombolytic
drug therapy after stroke is a treatment that never causes
death. Yet, physicians are well aware that thrombolytic drugs
can cause intracerebral hemorrhage and death. Similarly,
rapid transport to a hospital may cause death if, in their
hurry, the paramedics fail to properly stabilize the patient.
Indeed, it is a matter of debate whether fast transport is
harmful or beneficial for accident victims (Lerner et al., 2003).

We also question the validity of assumption (I). Subjects
with limited preaccident physical mobility (X) both have dif-
ficulty with activities of daily living (A) and are difficult to
quickly extract from a wrecked automobile. We doubt one
could measure physical mobility sufficiently well to insure
A ⊥⊥ Z |X, C = 1 holds, for Z “transport time.”

In conclusion, we regard neither the monotonicity assump-
tion (much less the stronger assumption (II)) nor the ignora-
bility assumption (I) as plausible in the authors’ examples.

(ii) Scientific goals. In Section 2.1, the authors list their
scientific goals as estimation of (a) f(A |S = 0, C = 1) and
(b) P (S = 0 |A = a, C = 1) as a function of a.

Attainability of the authors’ goals. The authors show
that f(A |S = 0, C = 1) and P (S = 0 |A = a, C = 1)
are identified under (I) and (II). In fact, a calculation using
Bayes’ rule shows that they are identified under the weaker
assumptions A ⊥⊥ Z |X, C = 1 and P(S = 1 |Z = C = 1,
X) = 1. These assumptions do not require any reference to
or assumptions about counterfactuals. Unfortunately, the ar-
guments in (i) above show that these weaker assumptions are
also unrealistic.

In spite of our concerns about the monotonicity as-
sumption, we now examine whether the authors’ goals are
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attainable when this assumption holds. In Section 5.1, the
authors state that the importance of their approach “is es-
sentially intact for addressing scientific goals,” even when (II)
is replaced by the weaker monotonicity assumption. We dis-
agree because f(A |S = 0, C = 1) and P (S = 0 |A = a,
C = 1) are not identified, and thus not consistently estimable,
when only (I) and monotonicity are imposed.

Perhaps the authors’ claim is predicated on the fact that
under (I) and monotonicity, the principal stratum distribu-
tions f(A |C = 1, P = ‘Z prevents death’) and f(A |C =
1, P = ‘always survive’) are identified. However, the follow-
ing example demonstrates that knowledge of these distribu-
tions does not suffice to address important scientific questions
when f(A |S = 0, C = 1), and thus f(A |C = 1), remain
unidentified.

Example. Suppose Z is an antibird-flu drug that is in limited
supply and C = 1 is contracting bird flu. Clearly, all else
being equal, we should give the drugs to those most likely to
be helped by the drug. Thus, we would like to know if P (Z
prevents death |A = 1, C = 1) > P (Z prevents death |A =
0, C = 1) for, then, we should give the drug to subjects with
A = 1 rather than A = 0. By Bayes’ Theorem, this inequality
is P (A = 1 |C = 1, P = ‘Z prevents death’)/P (A = 0 |C =
1, P = ‘Z prevents death’) > P (A = 1 |C = 1)/P (A = 0 |
C = 1). When Z does not cause death but is not guaranteed
to prevent death, we can identify the left-hand side of the
inequality but we cannot identify its right-hand side and thus
cannot determine whether the inequality is true.

Relevance of the authors’ goals. The preceding exam-
ple illustrates that knowledge of f(A |S = 0, C = 1) can
help address substantive questions. However, we argue that
P (S = 0 |A = a, C = 1) is not relevant for predicting sur-
vival when Z is available. If, as the authors assume, data on a
strong predictor Z are available, then clearly P (S = 0 |A = a,
C = 1, Z = z) is a more relevant predictive distribution than
P (S = 0 |A = a, C = 1). Indeed, if Z were a widely available
nontoxic medical treatment that never caused death, it would
be unethical to withhold Z and so P (S = 0 |A = a, C = 1,
Z = 1) would be the only predictive distribution of interest.
Note that this implies that obtaining data on Z is a good idea
irrespective of whether data on A are missing.

The authors state that knowledge of P (S = 0 |A = a,
C = 1) (or, when data on X are collected, of P [S = 0 |A =
a, C = 1, X]) helps “medical research understand the path-
ways through which those inputs relate to critical events and
death.” The authors did not provide any justification for this
claim. Furthermore, they did not define what they meant by
the term “pathway.” To evaluate the authors’ claim we first
clarify the meaning of this term. Because our discussion ap-
plies even when no data are missing, we may assume A is
always observed.

The term “pathways” is generally used as shorthand for
“causal pathways.” Consider the query: does A have a causal
effect on survival S through a pathway that does not involve
the critical event C? This query is often rephrased as whether
A has a direct causal effect on survival not through C. The
concept of direct effect has been formalized in three differ-
ent ways. Let S(a) and C(a) denote a subject’s counterfactual
survival and critical event outcome when A is set to a, which

we take to be well defined. The subject’s observed data S
and C are S = S(A) and C = C(A) with A the observed
treatment. Let the counterfactual S(a, c) denote a subject’s
survival when A and C are set to a and c. When S(a, c)
is well defined, S(a) equals S(a, C(a)). Suppose that, un-
like earlier subsections, X is a variable that is causally un-
affected by either A or C. The average controlled direct effect
of A on S when C is set to c within levels of X is defined as
CDE (c) = E[S(1, c) − S(0, c) |X] (Robins, 1986, 1987). The
average pure direct effect of A on survival not through C given
X is defined as PDE = E[S(1, C(0)) − S(0, C(0)) |X] =
E[S(1, C(0)) − S(0) |X]. This contrast measures the average
effect of A on survival when C is set to its value C(0) under
A = 0 (Robins and Greenland, 1992; Pearl, 2001). The prin-
cipal stratum average direct effect of A on survival at level c
given X is defined as PSDE (c) = E[S(1) − S(0) |X, C(0) =
C(1) = c] (Frangakis and Rubin, 2002).

The conditioning subset in PSDE (c = 1) consists of those
with covariate X who always suffer the critical event. Robins
(1986, Section 12.2) used this contrast to address the prob-
lem of censoring by competing causes of death, with S = 1
denoting death from a cause of interest (subsequent to a time
t) and C = 0 denoting death from competing causes (before
t). Subsequently, Robins (1995), Rubin (1998, 2000, 2006),
Little and Rubin (1999), Robins and Greenland (2000), and
Frankagis and Rubin (2002) also employed this contrast in ad-
dressing “censoring by death.” Baker (2000), Frankagis and
Rubin (2002), Gilbert, Bosch, and Hudgens (2003), Rubin
(2004), Shepherd et al. (2006), Hudgens and Halloran (2006),
and Matsuyama and Morita (2006) used this contrast to ad-
dress a number of other causal issues.

The contrasts CDE(c) and PDE are well defined only when
S(a, c) is well defined. In contrast, PSDE(c) is well defined
whenever S(a) and C(a) are well defined. How do we decide
whether a counterfactual is well defined? This has been a
hotly debated issue in philosophy. The following example,
from Quine (1950), effectively ended counterfactual analysis
among philosophers until the late 1960s. “If Bizet and Verdi
had been of the same nationality, they both would have been
French.” Quine argued that, because Bizet was French and
Verdi Italian, by symmetry considerations, this counterfac-
tual was neither true nor false and thus was ill defined. Lewis
(1973) later rejoined that, even though some counterfactu-
als may be ill defined and all are somewhat vague, many are
useful. Robins and Greenland (2000) agreed but went further.
They argued that counterfactuals are “vague” to the degree to
which one fails to make precise the hypothetical interventions.

Following Robins and Greenland (2000) and Baker (2000),
we believe that for subjects with C = 0, the intervention corre-
sponding to setting C to 1 is ill defined because (i)C = 1 only
encodes the occurrence of an accident, failing, for example, to
distinguish high-speed head-on collisions from rear-enders at
moderate speed and (ii) there is no basis for choosing among
them as the intervention. As a consequence S(a, c) is ill de-
fined. Thus among the three direct effects, only PSDE(c) is
well defined. Unfortunately, the following somewhat humor-
ous example demonstrates that knowledge of PSDE(c) may
add little to our understanding of the pathways by which A
relates to critical events and death. Like the authors, we re-
strict attention to PSDE (c = 1).
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Example. Suppose a psychiatrist hypothesizes that, condi-
tional on preaccident health and the seriousness of the crash
injury, hypervigilant, controlling individuals (A = 1) have
higher postaccident in-hospital mortality (S = 0) than dis-
tractible laid-back individuals (A = 0). His theory is that the
loss of personal control during hospitalization causes control-
ling individuals to have serious life-threatening arrhythmias.
Suppose intervention on A is well defined. For example, there
might exist drugs that can change a person from stateA= 1 to
A = 0 (Prozac and Valium) and vice versa (amphetamines).
Suppose, conditional on X, PSDE (c = 1) is very negative.
Does this refute a skeptic who believes the psychiatrist’s
hypothesis is false? It does not because PSDE (c = 1) would
also be negative under the following scenario. The psychi-
atrist’s hypothesis is false. However, hypervigilant individu-
als avoid most potential accidents. Those they cannot avoid
are usually serious head-on collisions with speeding cars that
cross the centerline, leaving no time to react. In contrast,
distractible, laid-back individuals have frequent, less serious
collisions, because they are neither in a hurry nor do they
look where they are going. Thus, individuals in the stratum
“always an accident” will tend to have serious accidents and
thus a high in-hospital mortality rate when A = 1, but less
serious accidents when A = 0. Thus, a negative PSDE (c = 1)
may arise because A = 1 increases mortality over A = 0; (i∗)
by directly causing increased in-hospital mortality, as hypoth-
esized by the psychiatrist or, (ii∗) solely by preventing minor
accidents, as in the last scenario. We conclude that negative
values of PSDE (c = 1) fail to indicate the presence of direct
effects of A not through its effect on accidents.

The difficulties with PSDE (c = 1) are due to the fact that
the event C = 1 lumps together the occurrence of accidents
of varying severity. Thus, the natural solution is to replace
C with a multivariate variable C∗ that records relevant de-
tails of an accident including the type and seriousness of the
injuries sustained. Then a nonzero C∗-specific principal stra-
tum contrast PSDE (c∗) could still be explained by pathway
(i∗) but no longer by (ii∗), thus surmounting the difficulties
of PSDE (c = 1). Unfortunately, replacing C with C∗ creates
a major problem for the principal stratum approach: there is
no subject with C∗(0) = C∗(1) if, as is likely, A has an ef-
fect on at least one component of every subject’s C∗. In that
case, the event C∗(0) = C∗(1) = c∗ has probability zero for all
c∗, rendering the principal stratum approach useless. Even if
there were subjects with C∗(0) = C∗(1), their numbers would
likely be few. Consequently, the principal stratum approach
would only apply to a small subset of the population. Robins
and Rotnitzky (2007) catalogue analogous difficulties in sub-
stantively important examples. We believe these difficulties
are sufficiently problematic to suggest that the principal stra-
tum approach to direct effects is, at times, of little scientific
value.

Counterfactuals regained. As we record more details in
C∗, the intervention that sets C∗ to c∗ and the counterfactual
S(a, c∗) becomes less and less vague. Consequently, CDE (c∗)
and PDE ∗ = E[S(1, C∗ (0)) − S(0, C∗ (0)) |X] will often
be reasonably well defined. In our opinion, these are the con-
trasts that best serve to distinguish among different pathways.
For example, they distinguish pathway (i∗) from (ii∗) above:

PDE∗ or CDE (c∗) equal to 0 for all c∗ is consistent with (ii∗)
but not with (i∗), while nonzero values of PDE∗ or CDE (c∗)
can be explained by (i∗) but not by (ii∗). Of course, even
S(a, c∗) is somewhat vague. The only counterfactuals free of
vagueness are the treatment-assignment potential outcomes of
a randomized experiment, but they are often uninformative
about pathways. Because PDE∗ only requires S(a, c∗) to be
defined for a = 1and c∗ = C∗ (0), there exist studies in which
PDE∗ may be regarded as well defined even when CDE (c∗)
is not for some C∗ (Petersen, Sinisi, and van der Laan,
2006).

We end this section by noting that none of the three con-
trasts CDE (c∗), PDE ∗, and PSDE(c) are identifiable from
knowledge of P (S = 0 |A = a, C = 1, X), f(A |C = 1, X),
and f(X |C = 1) without additional strong assumptions that
were not either assumed or considered by the authors. We
conclude that, even had the authors succeeded in their goal
of learning these distributions, this success would not have
helped “understand the pathways through which inputs re-
late to critical events and death.”

(iii) Statistical issues. In Section 6, the authors discuss
similarities between the problem treated in Section 5 and the
problem of treatment noncompliance in randomized trials. We
now show that these problems are statistically not merely sim-
ilar but isomorphic. As a consequence, (i) some of the mate-
rial in Section 5 simply reproves previously published results
and (ii) doubly robust semiparametric methods already exist
(Tan, 2006) that address the modeling issues of Section 5.2
and do not require that Z be dichotomous.

Assumptions of Section 5.2 are exactly the same as the
monotonicity, exclusion, and randomization assumptions con-
sidered in the noncompliance literature, upon appropriate
identification of the authors’ variables with those in a non-
compliance model. Specifically, identify X with a prerandom-
ization variable, Z with randomized arm, and S(z) with the
actual treatment received when Z = z. Then S = S(Z).
In the authors’ problem, A is a variable that is uninflu-
enced by Z and would be recorded, if, possibly contrary to
fact, the person survived. Thus, we can regard A as the po-
tential outcome A(s = 1, z) = A(s = 1) for any z. This
identity is the exclusion restriction. Further, assumption (I)
is the assumption that Z is randomized and the assump-
tion that Z never causes death is the monotonicity assump-
tion. Under these assumptions, Abadie (2003) has shown that

E[A |S(1) > S(0),X] = π(X,1)η(X,1)−π(X,0)η(X,0)
π(X,1)−π(X,0) where η(x,

z) = E[A |S = 1, X = x, Z = z] and π(x, z) = P [S = 1 |X =
x, Z = z]. The right-hand side is precisely the right-hand side
of the last displayed equation in Section 5.1 in the case of no
X’s. Tan (2006) showed how to obtain doubly robust estima-

tors of E[A |S(z) > S(z′)] = E[π(X,1)η(X,1)−π(X,0)η(X,0)]
E[π(X,1)−π(X,0)] when

z > z′, with high-dimensional X and Z possibly nonbinary,
even continuous, that are consistent if either a working model
for fZ [z |X = x] is correct or working models for both π(x,
z) and η(x, z) are correct.

(iv) A sensitivity analysis. Because we wish not to im-
pose assumptions (I) and (II), the distributions f(A |S =
0, C = 1) and P (S = 0 |A = a, C = 1) of interest are
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not identified. Instead we suggest a sensitive analysis moti-
vated by the observations that (a) f(A |S = 0, C = 1) and
P (S = 0 |A = a, C = 1) would be identified were P (A =
1 |C = 1) identified and (ii) with W ≡ (X, Z), P (A = 1 |C =
1) is identified under the nonparametric just-identified nonig-
norable model for π(W , A) ≡ P (S = 0 |W , A, C = 1) that
specifies π(W , A) = {1 + exp {−[h(W ) + Q]}}−1 where h(W)
is an unknown function and Q = q(A, W ) is a user-specified
selection bias function. However, because Q itself is not iden-
tified, we later vary it in a sensitivity analysis. Because W is
high dimensional, we also specify flexible parametric models
B(η) = b(W ; η) and h(W ; α) for b(W ) ≡ E[Aexp(Q) |C =
S = 1, W ]/E[exp(Q) |C = S = 1, W ] and h(W). We
compute the estimators (α̂, η̂) given in Scharfstein, Rotnitzky,
and Robins (1999) and P̂ (A = 1|C = 1) as the sample aver-
age over C = 1 of [S{1 − π(W,A; α̂)}−1 {A−B(η̂)} +B(η̂)] .
[P̂ (A = 1 |C = 1) is a doubly robust estimator of P (A = 1 |C
= 1). That is, with q(A, W ) known, the estimator is con-
sistent and asymptotically normal if either model h(W ; α)
or model B(η) is correct. Final substantive conclusions de-
pend on the set of functions q(A, W ) considered scientifically
plausible (Robins, 2002). Robins, Rotnitzky, and Scharfstein
(1999) showed this sensitivity analysis can be used as input
for a full Bayesian analysis.
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Frangakis et al. have presented a creative twist to the princi-
pal stratification approach in the context of a missing input
due to death. For the first part of the paper extending to
Section 5, the context is unique with the assumption that
the intervention (Z) is 100% effective in preventing death
(fully “protectable”). However, in Section 6, the authors go
a long way to making the methodology more generalizable to
contexts where the intervention is partially protectable, but
which result in more identifiability problems. We now pursue
with additional questions the authors’ insightful comparison
with other contexts, specifically the noncompliance random-
ized trial context after equation (2) and in Section 6. For both
the fully protectable and partially protectable cases, we relate
the authors’ strategy to the noncompliance randomized trial
context to better understand the ramifications of the assump-
tions. Following Frangakis et al., we make our comparisons of
the assumptions in terms of the implications for the princi-
pal strata. The authors note that the four principal strata in
their context (protectable always survivors, never survivors,
and defiers) correspond in a one-to-one way to the four prin-
cipal strata in the noncompliance, randomized trial context
(compliers, always takers, never takers, and defiers).

Accordingly, the authors’ interpretation of Assumptions 1,
2, and 3 in terms of principal strata can be compared to sim-
ilar interpretations of analogous assumptions in the random-
ized trial context and corresponding principal strata. These
randomized trial assumptions entail an ignorability assump-
tion related to Assumption 1, the exclusion restriction, and
a monotonicity assumption analogous to Assumptions 2 or 3
depending on the randomized trial design. The authors men-
tion the relationship between the two contexts with respect to
types of monotonicity assumptions. We now attempt to elab-
orate further on these relationships between the two contexts
in terms of ignorability, exclusion restriction, and monotonic-
ity assumptions.

1. Ignorability
The authors’ Assumption 1 [A, P ⊥ Z | X] may be stronger
than the ignorability or randomization assumption in the non-
compliance, randomized context, where A occurs after Z and
is measured for both levels of S. Randomization implies A(1),
A(0), P ⊥ Z | X, where A(1) and A(0) are what A would
potentially be if a subject were assigned to Z = 1 or Z =
0, respectively (e.g., Angrist, Imbens, Rubin, 1996). In the
parlance of randomized trials with noncompliance, the ignor-
ability assumption (Assumption 1) of the authors appears to
say there is no overall intention-to-treat (ITT) effect of the
baseline randomization (Z) on outcome (A). However, the ig-

norability assumption for randomized trials [A(1), A(0), P ⊥
Z | X] does not imply such a null effect of Z on A. We note
that neither ignorability assumption implies a null ITT effect
of Z on A within principal strata, which has implications for
the ensuing discussion of the exclusion restriction.

2. Exclusion Restriction
The authors do not assume the exclusion restriction. On the
face of it, one may ask if Assumption 1 implies the exclusion
restriction, as defined in Angrist et al. (1996) for the non-
compliance randomized trials context. However, under this
exclusion restriction assumption, the ITT effects of Z on A
equal zero in always and never takers (or never and always
survivors), which is not necessarily true under Assumption 1.
The ignorability assumption of Angrist et al. (1996) and ex-
clusion restriction with a monotonicity assumption similar
to Assumption 2 is sufficient for identifying the causal ef-
fect of treatment in compliers. One may ask if the exclu-
sion restriction would make sense in the authors’ context of
missing input due to death, where A temporally precedes Z
and S.

3. Monotonicity
We now attempt to elaborate on the authors’ relation be-
tween Assumption 2 and monotonicity. Assumption 2 seems
to lead to the converse situation of the Zelen single consent
design (Zelen, 1990), under which controls do not have access
to the randomized treatment, i.e., Pr(S = 1 | Z = 0) = 0. In
such cases, the always takers and defiers do not exist in com-
parison to the assumed nonexistence of the never survivors
and defiers under Assumption 2 in the authors’ context. That
is, the protectable and always survivor principal strata are
specified in the authors’ case in contrast to the compliers and
never-taker principal strata in the Zelen single consent de-
sign. Accordingly, the difference between the causal approach
of the authors and the causal methods for the single consent
design only involves differences between Assumption 1 versus
the randomization assumption and the exclusion restriction
assumption.

The authors emphasize the importance of some type of
monotonicity assumption to identify causal effects in their
context of missing input due to death. In both the full and
partial preventability cases, they assume that defiers do not
exist, as is often done in the noncompliance, randomized
trials context. Under partial preventability when the never
survivors exist and thus add parameters in need of identi-
fication, the authors impose parametric constraints involv-
ing covariates in equation (6) to identify the causal effects of
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interest. The authors note however at the end of Section 5,
“The fact that these quantities would be identifiable by our
method even without the models in (6) if samples were large
enough means that the results should not be sensitive to the
particular parametric models, as long as they are flexible.”
Given this statement, how important are baseline covariates
in identifying parameters under a fully parametric approach
with partial preventability? It is clear that parametric rela-
tionships between P and baseline covariates X are very crucial
for identifiability along with parametric distribution assump-
tions when monotonicity is relaxed (e.g., Rubin, 2004; Ten
Have et al., 2004).

In the presence of protectables and always and never in-
fected in the vaccine context, Gilbert, Bosch, and Hudgens
(2003) augment the monotonicity assumption of no defiers
with an additional but unidentifiable parametric relationship.
Specifically, under the ignorability assumption [A(0), A(1),
P ⊥ Z | X], Gilbert et al. (2003) specify a parametric model
relating S(0) to S(1) and A with the logistic function. In the
Gilbert case, the log-odds ratio parameter corresponding to A
is not identifiable. If Assumption 1 were to make sense in the
vaccine context, would Assumptions 1 and 3 help preclude the
need for such parameterizing such a relationship? Assumption
1 may not be feasible for the vaccine case, as it would imply
that assignment to vaccine has no effect on disease level.

Finally, there are several interesting extensions of the au-
thors’ approach in their missing input/death context involv-
ing the incorporation of more information. Such information
includes time to death (time to S = 1 since the intervening
factor (Z)) and also multiple measurements of A across time

some of which may be observed before S = 1. Given the pop-
ularity of joint survival/longitudinal outcome approaches and
selection models, such extensions of the authors’ work may be
beneficial in the missing input context.

In summary, the authors’ new implementation of the prin-
cipal stratification approach has generated many interest-
ing questions relating to other contexts and also challenges
for incorporating additional information that may be helpful
in identifying causal relationships between unmeasured and
measured variables.
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In “Principal Stratification Designs to Estimate Input
Data Missing Due to Death,” Frangakis, Rubin, An, and
MacKenzie (hereafter FRAM) propose an analysis to do what
may seem impossible: to recover input data that are missing
due to death and then use the (observed and missing) input
data to predict death. FRAM show that, under certain as-
sumptions, this can be done with the introduction of an addi-
tional variable, “treatment,” that possesses certain desirable
properties.

We organize our comments as follows. First, we present the
logic behind FRAM’s analysis from the perspective of contin-
gency table analysis. Second, with insights from this perspec-
tive, we will consider the implications of FRAM’s analysis.
Third, we discuss some considerations that should be taken
into account in practice.

1. From Principal Stratification
to Statistical Leverage
It appears that FRAM’s analysis hinges on the notion of
principal stratification (Angrist, Imbens, and Rubin, 1996;

Frangakis and Rubin, 2002), i.e., the idea that discrete sub-
populations, or strata, have distinct patterns of response to a
treatment (called Z in the article). For simplicity, we focus on
the main case discussed by FRAM: there are only two strata:
a stratum of “always survivors” regardless of the treatment,
and another stratum of “protectable” patients whose lives can
be saved, but who cannot be harmed, by the treatment. Here
the principal stratification assumption can be replaced by a
less restrictive assumption:

Equation 2a: If treatment is Z = 1, then the person must
be alive at 3 months (S = 1) or, equivalently, P[S = 1 |Z =
1] = 1.

Equation 2a is true if FRAM’s assumption 2 is true,
but Equation 2a invokes neither potential outcomes nor
principal stratification. The crucial ignorability Assump-
tion 1 of FRAM is that the assignment of Z is indepen-
dent of both stratum membership and input data (A),
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Table 1
Partial three-way crossclassified frequency table by Z, S,

and A

Z S A = 0 A = 1 Subtotal

0 0 F000 F001 F00+
1 F010 F011 F01+

1 0
1 F110 F111 F11+

Note: Entry Fijk refers to the frequency crossclassified by Z = i,
S = j, and A = k. Cells shaded light gray are not observed but
estimated. Cells shaded dark gray are not allowed by assumption.

conditional on covariate X (see below for more on this
assumption).

We note that covariate X plays no special role in FRAM’s
article except to make the ignorability assumption plausible.
Thus, the discussion that follows is conditional on X. In terms
of time ordering, the input data, A, exist prior to the critical
event (here an injury), the treatment Z occurs shortly after
the injury but prior to death, and S denotes death (here coded
as 1 if the subject is alive 3 months after the injury and 0
otherwise). Note that S is always observed so S is Sobs in the
FRAM article, and furthermore S = ZS(1) + (1 − Z)S(0),
where S(z) denotes the potential outcome when the treatment
Z = z. Z is always observed, but A is observed only if S = 1.

Because Z, S, and A are all binary, we can capture their
joint distribution with a three-way crossclassified contingency
table, shown in Table 1. We use Fijk to denote the frequency
count in the crossclassified table for the cell Z = i, S = j, and
A = k, with i = 0, 1, j = 0, 1, and k = 0, 1. We use the
plus sign, “+,” in the subscript to denote the subtotal for
summation over a particular subscript. Two features stand
out in Table 1. First, because all patients who received the
treatment (Z = 1) survived, the third row (representing Z =
1, S = 0) contains structural zeros. Second, while we know
the subtotal of the first row, representing the situation of
Z = 0, S = 0, we do not know the distribution of A
in that row. Indeed, recovering this distribution from pa-
tients who had died before the interview is a main re-
search objective here. Due to these two unique features, Ta-
ble 1 differs from the usual 2 × 2 × 2 contingency ta-
ble. We call such a table as Table 1 a “partial contingency
table.”

How can we recover the distribution of A in the row in
the partial contingency table? We make use of the ignorabil-
ity assumption in FRAM’s approach and our Equation 2a.
Equation 2a sets the third row (Z = 1, S = 0) to struc-
tural zeros so that F1+0 = F110, and F1+1 = F111. The in-
dependence assumption for the relationship between Z and
A means that the odds of A = 1 versus A = 0 is the same
across the two different values of Z. We thus have the following
constraint:

F1+1/F1+0 = F111/F110 = (F001 + F011)/(F000 + F010). (1)

We then add to equation (1) the known information that

F000 + F001 = F00+. (2)

Table 2
Numerical example using the NSCOT data for the partial

three-way crossclassified frequency by Z, S, and A, by
covariate X

Z S A = 0 A = 1 Subtotal

X = low-injury severity
0 0 3 14 17

1 257 72 329
1 0

1 6 2 8

X = high-injury severity
0 0 18 6 24

1 95 5 100
1 0

1 10 1 11

Notes: Cells shaded light gray are not observed but estimated. Cells
shaded dark gray are not allowed by assumption. Estimated relative
risk of death is 14.1.

Cells shaded light gray are not observed but estimated. Cells shaded
dark gray are not allowed by assumption. Estimated relative risk of
death is 3.4.

We can easily solve equations (1) and (2) for two unknowns,
F000, F001. In Table 2, we present our numerical results based
on the information provided by FRAM for their data from the
National Study on the Costs and Outcome of Trauma Centers
(NSCOT). There may be small discrepancies between our re-
sults and the actual results, because we recovered counts from
FRAM’s original results in percentages. Following FRAM,
we also treat the illustrative example as if we have pop-
ulation data and thus do not consider statistical inference
issues.

From the approach of a contingency table analysis, we see
why FRAM’s analysis works. We think that our contingency
table approach is more intuitive and more straightforward.
One advantage of our approach is that equation (1) clearly
reveals how the missing information pertaining to the dis-
tribution of A for the dead group (Z = 0, S = 0) is recov-
ered: it compensates the distribution of A among untreated
survivors (Z = 0, S = 1) so that the combined distribution
equals that of the treated group (Z = 1). Everything else
being equal, the distribution of A among the dead (Z = 0,
S = 0) moves in the same direction as the distribution of
A in the treated group (Z = 1) and in the opposite direc-
tion from that of the distribution of A among untreated sur-
vivors (Z = 0, S = 1). We are clearly borrowing informa-
tion from other related groups. It is as though we are able
to move an enormous object by a mechanical lever. Thus,
FRAM’s approach is an exemplary case of using “statistical
leverage.”

2. Implications for Research Objectives
In FRAM’s analysis using statistical leverage, an additional
treatment variable can recover the missing information about
input data. We showed earlier that we were able to fill in the
cells of missing data in Table 2 for their numerical example.
How well does the recovered information serve the original ob-
jectives of the substantive research? To answer this question,
let us visit the research objectives that FRAM’s analysis is
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intended to help achieve. The abstract clearly states the two
research objectives: (i) “to measure ‘input’ variables, which
describe the period before the critical event, and to charac-
terize the distribution of input variables in the cohort”; and
(ii) “to measure ‘output’ variables, primarily mortality, after
the critical event, and to characterize the predictive (condi-
tional) distribution of mortality given the input variables in
the cohort.”

If we are to take the first objective literally, it is not nec-
essary to fill in the missing data, as we did in Table 2. By
assumption, the distribution of the input variable (A) is in-
dependent of Z. Thus, the distribution of the input variable
(A) conditional on Z also describes the unconditional distri-
bution of the input variable (A), as the following is true by
the ignorability assumption (Assumption 1):

P (A = 1 |Z = 1) = P (A = 1 |Z = 0) = P (A = 1). (3)

Of course, this does not tell us P(A |Z = 0, S = 0), which can
only be recovered after missing values are estimated.

Achieving the second research objective requires an addi-
tional assumption; here we use Equation 2a. If we take the
stated objective literally, the researcher is interested in the
following quantities for the entire population:

P (S = 0 |A = k), k = 0, 1. (4)

We can further decompose these quantities by treatment sta-
tus (Z):

P(S = 0 |A = k)

= P(S = 0 |A = k, Z = 0)P (Z = 0 |A = k)

+P (S = 0 |A = k, Z = 1)P (Z = 1 |A = k),

= P(S = 0 |A = k, Z = 0)P (Z = 0)

+P (S = 0 |A = k, Z = 1)P (Z = 1)

= P(S = 0 |A = k, Z = 0)P (Z = 0). (5)

Note that we obtained the second line of equation (5) by using
the independence assumption and the last line of equation (5)
by using the information that all subjects survive if treated
(Z = 1). Because P(Z = 0) is unrelated to A, this term is
cancelled in the formula for the relative risk, the ratio of con-
ditional probabilities:

[P (S = 0 |A = 1)]/[P (S = 0 |A = 0)]

= [P (S = 0 |A = 1, Z = 0)]/[P (S = 0 |A = 0, Z = 0)]. (6)

Equation (6) can be estimated using our partial contingency
table approach by

[F001/(F001 + F011)]/[F000/(F000 + F010)]. (7)

We present our numerical results using equation (7) for the
illustrative example.

Two comments concerning the second research objective
are in order. First, if we wish to know the mortality rates by
the values of the input variable, it is necessary to know the

proportion not receiving treatment in the population, P(Z =
0). When the researcher is interested only in the relative risk,
or odds-ratio, by the input variable, P(Z = 0) can be ignored.
Second, the appearance that the group of treated persons
(Z = 1) do not seem to affect the relative risk in equation
(6) is misleading, as these persons affect the estimation of
the missing information as part of the “statistical leverage”
discussed earlier.

3. Practical Considerations
Although FRAM’s analysis allows the researcher to uncover
missing data that are not missing at random through the
power of statistical leverage, implementation is not triv-
ial. Below, we discuss some considerations that researchers
should take into account when adapting the analysis in
practice.

First of all, the researcher needs to carefully consider the
treatment variable Z. A number of questions arise:

1. Is Z an existing treatment in practice or a new interven-
tion as part of the study design?

2. If the researcher does not manipulate Z, are we comfort-
able with the assumption that Z and A are independent
conditional on covariates?

3. If the administrator knows the effectiveness of Z, what
prevents her/him from “overprescribing” the treatment
to reduce deaths?

4. Does the effectiveness of Z vary with time, location, pop-
ulation, or the proportion being treated?

While the first two questions are straightforward, as they are
concerned with the ignorability assumption, the last two ques-
tions need some discussion.

Let us generalize the idea of principal stratification. Sup-
pose the population is not divided into two strata—those
who always survive and those who are helped by treatment—
but numerous subclasses characterized by the degree to
which treatment Z helps survival. That is, the counter-factual
response function for person i is a continuous score, de-
pending on the person’s latent response function R, Ri =
Si (1) − Si (0). Under the common assumption of monotonicity
(Angrist et al., 1996; Frangakis and Rubin, 2002), we specify
that 0 ≤ Ri ≤ 1. Further imagine that because the admin-
istrator of Z knows additional information (unknown to the
researcher) about patients’ and hospitals’ conditions, he or
she would assign Z to those patients who would benefit most
from the treatment. That is, we entertain the possibility that
the likelihood of receiving Z is correlated with the amount
of treatment effect R. When this is the case, increasing the
proportion of Z necessarily results in lowering the average
treatment effectiveness of treatment Z, as the composition of
the stratum receiving treatment (Z = 1) has changed from
having a higher average R score towards having a lower av-
erage R score (i.e., from benefiting more on average to bene-
fiting less on average). This discussion illustrates a practical
difficulty with the principal stratification approach in gen-
eral: we do not know individuals’ memberships in the various
strata, as the existence of the strata can only be inferred from
the group level. Thus, we may view principal strata either
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as distinct subpopulations with distinct response patterns or
as aggregations of heterogeneous individuals with somewhat
similar response patterns. The latter, nominal perspective is
consistent with the view of heterogeneous treatment effects at
the individual level. Our concern is that if we accept the nom-
inal perspective, policy or technological changes can change
the proportion and at the same time the composition of the
group of subjects receiving treatment. Properties of principal
strata, nominally defined, are thus not fixed and are subject
to change.

We next consider the role of the covariates X. From the
perspective of assumptions needed to make FRAM’s analysis
work, X precedes both A and Z and indeed makes them inde-
pendent of each other conditional on X. From the perspective
of data collection, X was not provided in the interview, as it
would, like A, then be truncated by death. Conceptually at
least, one would like to condition on a rich set of covariates be-
fore accepting the conditional independence assumption. For
example, we would like to know a person’s medical history, de-
mographics, and family socioeconomic status. Needless to say,
it is not possible to condition on them if they are considered
part of A instead of X. In other words, an input variable A and
a covariate X differ in two respects: (i) X is observed, whereas
A is only partially observed; (ii) X is to be conditioned on,
whereas A and Z are assumed to be conditionally indepen-
dent. Strict association of partial observability with the con-
ditional assumption is more a practical convenience than a
necessary condition justified by science. Conceptually at least,
it is possible that we may wish to condition on covariates
that may only be partially observed. However, not observing
them in practice would force us to convert them into input
data (A) that would then need to satisfy the independent
assumption.

There is no easy and magic solution to this problem. We
recommend that the researcher collect more and better data
as a possible remedy. One possibility is to use administrative
records (such as the death certificates and medical records).
Another possibility is to interview surviving family members
for proxy reports. In general, better data can yield far more
statistical information than can be achieved through statisti-
cal leverage. In the approach of pushing for better-observed

data, the boundary between input data and covariates is
blurred.

4. Conclusion
The FRAM analysis is intuitively appealing, and relatively
easy to implement. One of the most interesting features of the
analysis is that it allows the researchers to impute data that
do not satisfy the ignorability assumption alone, but under a
model that satisfies ignorability.

If the input data were to satisfy the ignorability assump-
tion, the distribution of the input data would be the same
between survivors and nonsurvivors. This is clearly implausi-
ble and is rejected by FRAM. Even after introducing a new
treatment, FRAM do not assume ignorability in the distri-
bution of the input data between survivors and the non-
survivors within treatment status. Rather, the ignorability
assumption is imposed on the two-way marginal association
between the treatment variable and the input variable. This
restriction allows FRAM to recover missing input data among
nonsurvivors.

How well FRAM’s analysis will work in practice is a sub-
stantive question that will depend on concrete applications.
At the minimum, the new analysis provides alternative
estimates so as to characterize the distribution of input data
and the association between the input data and the risk of
deaths. This exercise is informative even if one does not nec-
essarily believe that the underlying model is correct, for the al-
ternative estimates provide some sensible and plausible bases
for the researcher to critique and improve upon. For this and
many other reasons previously discussed, we recommend this
article to all who are interested in the topics it covers: miss-
ing data, causal inference, principal stratification, and partial
contingency table.
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1. Xie and Murphy
Xie and Murphy (XM) describe our problem using only
observed-data representations, and then discuss some addi-
tional practical issues.

Physics versus pure empiricism. XM present a reduced
form of our problem using only the resultant observed
data. Motivated from this representation, XM (and also
Robins, Rotnitzky, and Vansteelandt—RRV) suggest that one
does not need to invoke potential outcomes and principal
strata. We disagree: Potential outcomes and principal strata
are essential in order to formulate the problem and goal,
to state explicit assumptions (such as ignorable treatment
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assignment), and to devise possible designs to address the
problem. For instance, with only notation for observed data,
it is not possible even to define the meaning of a causal ef-
fect. That meaning was central in our approach—to regard a
value as truly missing (i.e., not observed but observable), only
if there exists, in principle, an intervention that would have
caused it to be observed. The reader can appreciate the need
for potential outcomes also from XM’s own writing: when they
comment outside of our specific problem, they too invoke po-
tential outcomes and principal strata (see their discussion af-
ter question (d) in “practical considerations,” where their Ri

is defined as the difference of never jointly observable poten-
tial outcomes: Si(1) − Si(0)).

More generally, a representation in terms of potential out-
comes and principal strata is required if one is to describe
the theoretical, physical underlying system of the problem.
Many analogies regarding such physical versus purely empir-
ical representations can be drawn. For example, man went
to the moon based on Newton’s theoretical, physical (al-
beit not quite correct) model of nature’s laws. That voyage
would not have been possible if Newton had not persisted in
seeking a physical model, but instead had proposed—and if
we had accepted as appropriate—some nondifferentiable step
function (e.g., based on a CART—tree diagram) that would
stop after “explaining” empirically only his discrete, few
observations.

In summary, postulating a theory in terms of its underly-
ing physics has been, and will continue to be more beneficial
than mere explanation in terms of observed data, because a
physical system is actually more parsimonious and thus more
generalizable, and hence more powerful for predicting other
observable events.

On practical considerations. A researcher needs to con-
sider the thoughtful questions (a)–(d) that XM raise, and
address them based on the ability to obtain data on fac-
tors approximately satisfying our assumptions. An example
is question (c): if the prevention factor z is known to be ef-
fective, why does the decision maker not administer the most
effective level of z to all? The answer involves obstacles ex-
ternal to the decision maker. Taking, for example, the time
to transport an injured patient to the hospital, and adjust-
ing for severity of injury and knowledge that time is impor-
tant, considerable variation in time can still exist because
of other factors: how promptly the injury victim was first
spotted and reported; how close the nearest help was; avail-
ability of fast transport at the time; and traffic and other
problems encountered by the transport mode. This comment
also addresses RRV’s point on ethical considerations: varia-
tion in such obstacle factors cannot be generally viewed as
ethical or not, because these obstacles are rarely in the con-
trol of the ethically charged decision maker for z. Of course,
Zi is assigned by the decision maker so as to maximize the
anticipated likelihood of survival, but this likelihood is only
conditional on what the decision maker knows, and so after
we condition on that knowledge, we can effectively assume
ignorability.

Regarding XM’s discussion of more general principal strata,
certainly the meaning of the strata Si(z) depend on the mean-

ing of the prevention factor z, but this is not a complication
of principal strata, but a consequence of meanings changing
with problems. Within a problem, though, the meaning of
Si(z) does not depend on the assignment mechanism for the
actual levels Zi.

XM wonder about the distinction between the covariates
we denoted as X and the input factor A, stating that “X
precedes both A and Z.” This is not generally correct. Some
covariate values are determined prior to both A and Z, such
as age or gender, but other covariate values, and often those
used to ensure ignorability, are determined prior to Z but after
A. In our example, X was the severity of injury as judged by
the medical personnel after the injury occurred, whereas the
input variable A was a disability whose value is determined
before the injury, but only recorded at the interview after the
injury.

More important, as we have emphasized in the article, there
is a clear scientific distinction between the critical covariates X
and the input A: the covariates X used to ensure ignorability
need only be those that were involved in the decision maker’s
informed choice to administer or not the prevention factor
(for example, X can often leave out factors causing variation
in z such as the obstacle factors just described). The key fact
that makes it easier to record X than A is this: If the decision
maker for z is a person other than the injured victim, we can,
in principle, talk to that decision maker (whether or not the
victim eventually dies) and ask for the value of all those vari-
ables X that the decision maker used for the assignment of the
prevention factor. We cannot do the same for A because, by
definition, its accurate measurement depends on the victim’s
ability to be interviewed, which is impossible if the victim
dies.

2. Ten Have
Ten Have commented on the role of an exclusion restriction
and the role of covariates, and has indicated numerous direc-
tions for possible fruitful extensions to our methods.

On ignorability and exclusion. Ten Have wonders about
our assumption of ignorability, that is, (A, P ) ⊥⊥ Z |X, and
its relation to exclusion restrictions typically made in settings
of noncompliance. Because the factor A is, by design, an input
factor that precedes the prevention factor z, the value of A
cannot be changed (for any person) by changing the level of
z. If we had allowed potential outcomes for A under z = 0, 1,
i.e., Ai(0), Ai(1), then the exclusion restriction Ai(0) = Ai(1)
would have been a consequence of the temporal ordering of the
design, and not an assumption, and that is why we need not
make it.

Now, given that A precedes z, it follows that A, like any
other covariate, will be balanced between levels of z after we
condition on the variables that were used to make the as-
signment of the actual levels Zi—hence the ignorability as-
sumption 1. For that assumption, we disagree with Ten Have’s
claim that “neither ignorability assumption implies a null ITT
effect of Z on A within principal strata”: it is not difficult to
show that the ignorability assumption 1, i.e., (A, P ) ⊥⊥ Z |X,
implies that A ⊥⊥ Z |P , X.
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countability
of naturals
   1, 2, 3, ...

non-countability
of indefinitely
long sequences
of naturals
(reals in a unit
segment)

                     isomorphism

(Euclid, Cantor)

the truths provable
by (discrete
sequence of)
axiomatic arguments
are countably many

(hence:) for every
axiomatic system
there are truths
unprovable
axiomatically—and
yet provable with no
more axioms

        (Godel)
..

Figure 1. A remarkable case of isomorphism.

On relations to other problems—what is important
in an isomorphism? Ten Have observes the similarity
of the mathematics in our problem to the mathematics of
noncompliance and Zelen’s design, a comment related to the
isomorphism discussion of RRV.

It is revealing to explicate the source of importance in an
isomorphism. To do so, we will invoke a striking example—
the isomorphism involved in Gödel’s theorem of incomplete-
ness (Gödel, 1931; see also Nagel and Newman, 2001). In
brief, Gödel considers axiomatic systems, where axiomatic
proofs are constructed by logically building those proofs based
on the axioms. Assuming the system is consistent, Gödel
then constructs a proposition that has a remarkable dual-
ity: (1) there exists no axiomatic proof that the proposi-
tion is true, yet (2) there exists a nonaxiomatic, but fully
valid, proof that the proposition is true, without invoking
additional axioms. The relation to our discussion is this:
Gödel’s theorem was a completely new (and unexpected)
result, yet it was isomorphic to another well-known result,
that indefinitely long sequences of natural numbers are un-
countable. A somewhat liberal, but useful, explanation of
the mapping, provided in the figure, is that the proofs
that we can construct axiomatically using finite sentences
must be countably many, yet there are uncountably many
truths (Figure 1).

Thus, the critical element in any isomorphism is the in-
tuition that leads us to see, in the first place, how one
problem—in our case, missing data—could be solved by a
design that draws power from an appropriate isomorphism—
in our case, involving causal inference. The isomorphism
here is not really about why instrumental variables work,
but much deeper; it involves the relation, discussed in the
final section of the target article, between the situation
where a quantity can be legitimately viewed as missing, and
the requirement that there should exist, at least in prin-
ciple, an intervention that could have made that quantity
observed.

On monotonicity and covariates. Ten Have also asks how
important covariates are for identifying parameters under a

fully parametric approach. Under the assumptions that allow
such identifiability, covariates are as important in the para-
metric as in the nonparametric formulation, because in or-
der to justify the ignorability assumption 1, we must condi-
tion on the covariates involved in the decision maker’s choice
to administer the prevention factor z. Of course, if mono-
tonicity is relaxed, covariates that predict the direction of ef-
fect of the prevention factor are also important for narrow-
ing the ranges of the plausible distributions, as Ten Have
suggests.

Moreover, Ten Have points toward the connections to the
very interesting problem of evaluating a vaccine’s efficacy on
the viral load for post-randomization infectees—a problem
in which the use of principal stratification was initiated by
Gilbert, Bosch, and Hudgens (2003). The scientific structure
of that problem, as Ten Have observes, is different from this
one because an exclusion restriction in the vaccine problem is
questionable and should not be assumed a priori.

Finally, it is rewarding to see how quickly Ten Have points
to many new fruitful directions and challenges in which such
ideas can be useful.

3. Robins, Rotnitzky, and Vansteelandt
RRV mainly comment on our assumptions and goal. Their
comments about our assumptions are addressable. Their com-
ments about our goal are not relevant to a researcher who
interprets the meaning of our result in a scientific context.

(i) Addressing RRV’s points on assumptions. RRV’s
comments about our assumptions are addressable be-
cause they are assessable. For example, RRV say
that physicians know that death can arise from hem-
orrhage when a thrombolytic drug is given [ver-
sus if it is not given] after an infarction. That is
true but is not relevant to our assumption regarding
timing of administration: Physicians also know that
among infarction victims to whom a thrombolytic
drug is administered, the sooner the drug is given,
the higher the likelihood of survival; in fact there
is strong evidence from randomized trials that the
probability of hemorrhage is practically zero (est. at
0.2%) when the drug is given within 2 hours after
a myocardial infarction, whereas when the drug is
given later than 2 hours, the probability of hemor-
rhage is estimated at 2.5%, a relative risk of more
than 10 fold (Steg et al., 2003). Thus the note of
RRV is incomplete and could mislead the casual
reader.

RRV also point to the debate about whether at-
tempting to stabilize injured persons is better be-
fore or after transporting them to the hospital. This
debate exists but is also not relevant to our as-
sumptions. Obviously those who transport injured
victims know whether or not they made such sta-
bilizing attempts. Therefore, when this information
is used (e.g., as a stratifier in the variables X that
were used to make the decisions regarding trans-
portation), its variation is controlled (in principle)
and is no longer a concern. With analogous thought
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and adjustments, one can address RRVs other
concerns.

(ii) The importance of using scientific meaning in
our goals. It is important to recall the two observa-
tions we made under partial preventability (Section
5.1). First, we stated that we cannot fully estimate the
predictive distribution of mortality given the input
factor. Second, we showed that we can still estimate
the distributions of the input variable, A, for patients
who are protectable by the prevention factor, which
also implies we can estimate the distribution of A for
patients who are “always survivors.” That is, we can
estimate

P(Ai = 1 | Pi = protectable) and

P(Ai = 1 | Pi = always survivor). (1)

RRV’s comments on this point (regarding the anti-
bird-flu drug) essentially repeat—but stop at—our
first observation, without paying attention to our sec-
ond observation. The strata “protectable” and “al-
ways survivors” have scientific meanings, and are not
merely technical abstractions to be averaged over (or
not) depending on some statistical goal. In most prob-
lems, the strata of “protectable” and “always sur-
vivors” are best understood as gradations of a con-
dition in a single underlying system. For example,
in the injury problem, this system determines how
much injury damage a person can endure at var-
ious levels of a treatment factor: An “always sur-
vivor” is a person of higher endurance than a “pro-
tectable” person, who needs the more effective level of
the treatment to survive. In RRV’s example, the sys-
tem determining “protectable” and “always survivor”
is the immune system, and “always survivors” are
those with generally stronger immune system than the
“protectables.”

Using the scientific meaning of the principal strata
is crucial because it allows us to interpret the es-
timable comparison in (1) above: if “always survivors”
have a higher proportion of the input factor’s state
A = 1 than the “protectables,” then this implies that
state A = 1 is associated with more robust states of
the system that determines the principal strata. For
example, it would imply that A = 1 is associated with
higher endurance to injuries, in the injury example;
and that A = 1 is associated with higher immunity
to the virus, in the bird flu example. This conclu-
sion is reachable without needing to identify fully the
predictive distribution of mortality, although there is
the need to think about the meaning of the principal
strata.

Of course, the association between the input factor
and the principal strata of protectable versus al-
ways survivor does not imply causality. RRV dis-
cuss this at length (in their discussion of the psy-
chiatrist’s hypothesis), but this issue seems to be
entirely obvious. Our goal—to learn about the asso-
ciations of A and mortality when A is missing un-
der death—provides information to suggest that A

is related to (and thus may be causally involved in)
the system determining the endurance of a person to
survive an injury. With this suggestion established,
whether the factor A is or is not a causal agent
must be addressed with a different design, and can-
not be addressed simply by the notational arguments
of RRV.

(iii) On statistical issues. RRV also reiterate at length
our observation that our problem is related, indeed
isomorphic, to other problems involving principal
stratification. Although we also could have detailed
many additional examples from our own work (e.g.,
Frangakis et al., 2004; Li and Frangakis, 2006; Rubin,
2006; Jin and Rubin, 2007), we believe that is more
beneficial to the reader to read our conceptual rejoin-
der to Ten Have on isomorphisms.

(iv) The role of objectivity and sensitivity analysis.
We agree that sensitivity analyses can be useful, but
the question is how to conduct them. A sensitivity
analysis can only be useful to the extent that the
framework in which it is formulated is rich enough
so that it can provide, at least partly, an objective
assessment of the values or ranges of the sensitivity
parameters. “Objective” here does not mean “abso-
lutely correct,” but it does means “based on assump-
tions that are understandable,” because then, as we
have seen from discussions like this (item (i)), one
can clarify the ways to assess and address concerns
about these assumptions. It is such objectivity that
our design and methods provide.
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