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ABSTRACT 

Population heterogeneity is ubiquitous in social science research.  The very objective of 
social science is not to discover abstract and universal laws but to understand population 
heterogeneity.    Due to population heterogeneity, causal inference with observational data 
in social science is impossible without strong assumptions.  There are two potential 
sources of bias.  The first is bias in unobserved pretreatment factors affecting the outcome 
even in the absence of treatment.  The second is bias due to heterogeneity in treatment 
effects.  In this paper, I show how “composition bias” due to population heterogeneity 
arises when treatment propensity is systematically associated with heterogeneous 
treatment effects.  Of particular interest is the way in which composition bias, a form of 
selection bias, arises even under the classic assumption of ignorability, as I demonstrate 
with a simple simulation example.   
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INTRODUCTION 

 Two philosophical views have dominated the practice of science.  In the classic view, firmly 

established by Plato and still well represented in physical science today, scientific discoveries 

consist of abstract knowledge about observed phenomena that essentially share the same 

properties.1 An alternative view, first provided by Darwin and now well represented in social 

science, holds that members of a population are inherently different from each other and should be 

studied as such.  Mayr (1982, 2001) called the first view “typological thinking” and the later view 

“population thinking.”     

Typological thinking has had enormous influence on physical science and remains arguably 

the dominant view of what constitutes scientific truths.  According to typological thinking, science 

should focus on the discovery of universally valid and unchanging laws.  Toward this end, scientists 

should extract abstract but conceptually homogenous relationships in the universe by eliminating 

the influences of extraneous, confounding factors.   They may construct thought experiments in 

developing scientific theories for typical objects and conduct actual experiments in controlled 

laboratory conditions while attempting to verify the theories, but the objective is always to obtain 

knowledge that would be universally valid anywhere in the universe.   A strong assumption, which 

has worked well in natural science, is homogeneity: once we obtain knowledge about a type of 

phenomena, we can generalize the knowledge to individual, concrete cases.  Observed variation in 

the real world is treated as apparent and thus insignificant.  This view was further reinforced in the 

seventeenth century by measurement theory, which revealed that measurement errors could give 

rise to such variations and also developed methods of handling measurement errors (Stigler 1986).  

In social science, Adolphe Quetelet (1796-1874) applied measurement theory to his “social 

physics,” which naively essentialized population averages, in the form of the “average man,” as the 

main objective of social science (Quetelet 1842).   

It was Charles Darwin (1809-1882) who first challenged typological thinking in a 

fundamental way (Mayr 1982, 2001).  In fact, the proposition that individual variability is real 

                                                             

1 Plato separated the “world of being” (or the world of Forms) from the “world of becoming” (or the 
world of things).  The “world of being” is where true knowledge resides.  The “world of becoming” is 
what we actually observe in real life.   
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rather than apparent is essential to Darwin’s theory of evolution by natural selection.2  Deviations 

from the average in a population were no longer considered scientifically trivial, as they were when 

using typological thinking, but were seen as the very basis of evolution.  The importance of 

variation was later introduced to social science by Francis Galton (1822-1911). Instead of focusing 

on typical phenomena as dictated by the paradigm in typological thinking, Galton was concerned 

with "how the quality is distributed" (Galton 1889, pp.35-36).  A historian of science characterizes 

Galton as someone to whom “Individual differences . . . were almost the only thing of interest” (Hilts 

1973, p.221).   Departing from Quetelet, Galton was interested in variations in statistical 

distributions as objectives meriting the attention of science.   

Population thinking pioneered by Darwin and Galton led to the emergence of a new kind of 

science: population science.  Here, I wish to borrow Neyman’s definition of populations (Duncan 

1984):  

Beginning with the nineteenth century, and increasing in the twentieth, science brought 
about “pluralistic” subjects of study, categories of entities satisfying certain definitions but 
varying in their individual properties.  Technically such categories are called 
“populations.”(p.96)    

 

Note that in a population science, the scientist no longer assumes that all concrete units in a 

population are essentially the same – or homogeneous.  Rather, it is explicitly recognized that units 

of analysis in a population are different from one another – or heterogeneous.   In my view, most 

social science disciplines, including economics, demography, psychology, sociology, political 

science, and anthropology, are population sciences in that they cannot afford to discard individual-

level variation as a mere nuisance or measurement error by assuming that all units of analysis are 

essentially the same.  The recognition of inherent individual-level heterogeneity has important 

consequences for research practices.  For example, a social scientist always needs to first define the 

population being studied before conducting a study.  Because units of analysis in a population all 

differ from one another, scientific (or random) sampling is important to ensure replicability across 

different studies.   In this paper, I will illustrate some implications of this heterogeneity for causal 

inference.  
                                                             

2 The first two chapters of Darwin’s book On the Origins of Species (1859) are entitled “Variation 
under Nature” and “Variation under Domestication.”   
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CAUSAL INFERENCE UNDER POPULATION THINKING 

 The recent literature on causal inference in social science already recognizes the 

importance of population heterogeneity (e.g., Heckman 2005; Holland 1986; Manski 1995; Rubin 

1974; Winship and Morgan 1999).   Let me use some notations to illustrate the problem.   

 Suppose that a population, U, is being studied.  Let Y denote an outcome variable of interest 

that is a real-valued function for each member in U, and let D denote a dichotomous treatment 

variable (with its realized value being d) with D=1 if a member is treated and D=0 if a member is 

not treated.  For clarity, let subscript i represent the ith member in U.  We further denote 1
iy  as the ith 

member’s potential outcome if treated (i.e., when di=1), and 0
iy as the ith member’s potential 

outcome if untreated (i.e., when di=0).  Due to the ever-presence of population heterogeneity, we 

should conceptualize a treatment effect as the difference in potential outcomes associated with 

different treatment states for the same member in U: 

 𝛿𝑖 = 𝑦𝑖1 − 𝑦𝑖0,       (1) 

where δi represents the hypothetical treatment effect for the ith member. The fundamental problem 

of causal inference (Holland 1986) is that, for a given unit i, we observe either 𝑦𝑖1 (if di=1) or 𝑦𝑖0(if 

di=0), but not both.  Given this fundamental problem, how can we estimate treatment effects? 

Holland describes two possible solutions: the “scientific solution” and the “statistical solution.”  

 Based on typological thinking, the scientific solution capitalizes on homogeneity in 

assuming that all members in U are exactly the same: T
j

T
i yy = , and C

j
C
i yy = , where j ≠ i is a 

different member in U.   This strong assumption would allow the researcher to identify individual-

level treatment effects.  Indeed, if the strong assumption can be maintained and there is no 

measurement error, one would need no more than two cases in U (say i and j with different 

treatment conditions) to reveal treatments effects for all members in the entire population, for the 

following would hold true:  

 𝛿 = 𝑦𝑖1 − 𝑦𝑖0 = 𝑦𝑗1 − 𝑦𝑗0 = 𝑦𝑖1 − 𝑦𝑗0,      (2) 

for any j ≠ i, where we can drop the subscript of δ because it does not vary across members in the 

population.   However, as I discussed earlier, in social sciences, which are population sciences, 
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heterogeneity is the rule rather than the exception.  Thus, in general, the formula under the strong 

homogeneity assumption (equation 2) is of no practical value in social science.   

For a population science, the ubiquity of population heterogeneity dictates the statistical 

solution as a necessity.  One limitation of the statistical approach is that we can compute quantities 

of interest about causal effects only at the group level.  One example is to compare the average 

difference between a randomly selected set of members in U that were treated to another randomly 

selected set of members that were untreated. Because this quantity is essentially the average 

treatment effect over the entire population, it is called the Average Treatment Effect (ATE):  

𝐴𝑇𝐸 = 𝐸�𝑌1 − 𝑌0�.       (3) 

Quantities of interest in the statistical approach can also be defined for other groups (or sub-

populations), as long as they are well defined.  For example, Treatment Effect of the Treated (TT) 

refers to the average difference by treatment status among those individuals who are actually treated: 

𝑇𝑇 = 𝐸�𝑌1 − 𝑌0�𝐷 = 1�.          (4) 

Analogously, Treatment Effect of the Untreated (TUT) refers to the average difference by treatment 

status among those individuals who are not treated: 

𝑇𝑈𝑇 = 𝐸(𝑌1 − 𝑌0|𝐷 = 0).                 (5) 

However, in order to compute quantities of ATE, TT, and TUT, it is necessary to invoke assumptions 

so that population heterogeneity would not cause selection biases to our estimates of such 

quantities from observational data.   

For an elaboration of the above statement, let us partition the total population U into the 

subpopulation of the treated 𝑈1 (for which D=1) and the subpopulation of untreated 𝑈0 (for which 

D=0).  We can thus decompose the expectation for the two counterfactual outcomes as follows: 

 𝐸(𝑌1) = 𝐸(𝑌1|𝐷 = 1)𝑃(𝐷 = 1) + 𝐸(𝑌1|𝐷 = 0)𝑃(𝐷 = 0) (6)  

 𝐸(𝑌0) = 𝐸(𝑌0|𝐷 = 1)𝑃(𝐷 = 1) + 𝐸(𝑌0|𝐷 = 0)𝑃(𝐷 = 0). (7) 

Ignoring issues of statistical inference and focusing only on identification, we can estimate from 

observed data: 𝐸(𝑌1|𝐷 = 1),𝐸(𝑌0|𝐷 = 0),𝑃(𝐷 = 1), and 𝑃(𝐷 = 0).  Selection bias arises if:   

 𝐸(𝑌1|𝐷 = 1) ≠ 𝐸(𝑌1|𝐷 = 0) ≠ 𝐸(𝑌1)    (8) 

 𝐸(𝑌0|𝐷 = 1) ≠ 𝐸(𝑌0|𝐷 = 0) ≠ 𝐸(𝑌0).   (9)  
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Recall that we can only observed either 𝑌1 or 𝑌0 for any unit in U.  Thus, we can only make 

inferences about, but cannot directly estimate, a quantity of interest representing causal effect, such 

as ATE. If we use the naive estimator  𝐸(𝑌1|𝐷 = 1) −  𝐸(𝑌0|𝐷 = 0) for 𝐸(𝑌1) − 𝐸(𝑌0), which is ATE, 

what are potential sources of bias?  To answer this question, we can further decompose an overall 

selection bias in the naive estimator as follows.  Let us now use the following abbreviated notations:  

p = the proportion treated (i.e., the proportion of cases D=1), 

q = the proportion untreated (i.e., the proportion of cases D=0),  

𝐸(𝑌𝐷=11 ) = 𝐸(𝑌1|𝐷 = 1),  

𝐸(𝑌𝐷=10 ) = 𝐸(𝑌0|𝐷 = 1), 

𝐸(𝑌𝐷=01 ) = 𝐸(𝑌1|𝐷 = 0),  

𝐸(𝑌𝐷=00 ) = 𝐸(𝑌0|𝐷 = 0). 

Using the iterative expectation rule, we can decompose ATE as follows: 

    𝐴𝑇𝐸 = 𝐸�𝑌1 − 𝑌0�  

= 𝐸(𝑌𝐷=11 )𝑝𝑝 + 𝐸(𝑌𝐷=01 )𝑞 − 𝐸(𝑌𝐷=10 )𝑝𝑝 − 𝐸(𝑌𝐷=00 )𝑞 

= 𝐸(𝑌𝐷=11 ) − 𝐸(𝑌𝐷=11 )𝑞 + 𝐸(𝑌𝐷=01 )𝑞 − 𝐸(𝑌𝐷=10 ) + 𝐸(𝑌𝐷=10 )𝑞 − 𝐸(𝑌𝐷=00 )𝑞 

= 𝐸(𝑌𝐷=11 ) − 𝐸(𝑌𝐷=00 )− [𝐸(𝑌𝐷=10 ) − 𝐸(𝑌𝐷=00 )] − (𝑇𝑇 − 𝑇𝑈𝑇)𝑞,            (10) 

where, as previously defined in equations (4) and (5), TT is the average Treatment Effect of the 

Treated, and TUT is the average Treatment Effect of the Untreated:  

𝑇𝑇 = 𝐸(𝑌𝐷=11 − 𝑌𝐷=10 ), 

𝑇𝑈𝑇 = 𝐸(𝑌𝐷=01 − 𝑌𝐷=00 ). 

 Thus, we can observe from equation (10) that if we use this naive estimator from observed 

data 𝐸(𝑌𝐷=11 )− 𝐸(𝑌𝐷=00 ) for ATE, there are two potential sources of bias:  

(1) The average difference between the two groups in outcomes if neither group receives the 

treatment: 𝐸(𝑌𝐷=10 ) − 𝐸(𝑌𝐷=00 ). We call this the “pre-treatment heterogeneity bias” or “Type 

I selection bias.” 

(2) The difference in the average treatment effect between the two groups (𝑇𝑇 − 𝑇𝑈𝑇), 

weighted by the proportion untreated 𝑞.  The weight of 𝑞 results from our choice to define 

pre-treatment heterogeneity bias for the untreated state.  We call this the “treatment-effect 

heterogeneity bias,” or “Type II selection bias.”  
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These two sources of bias may exist, because subjects may be sorted into treatment or control 

groups either by their differences in the base-line level (i.e., Type I selection bias) or by their 

differences in the effect of treatment (i.e., Type II selection bias).  Let me now reiterate that the 

treatment-effect heterogeneity bias or Type II selection bias is the situation in which we encounter 

the following:      

𝑇𝑇 ≠ 𝑇𝑈𝑇; 

ATE ≠ 𝑇𝑇; 

ATE ≠ 𝑇𝑈𝑇. 

In particular, when 𝑇𝑇 − 𝑇𝑈𝑇 > 0, there is a sorting gain so that the average treatment effect for 

the treated is greater than the average treatment effect of the untreated.  Conversely, if  

𝑇𝑇 − 𝑇𝑈𝑇 < 0, there is a sorting loss.   

RANDOM ASSIGNMENT, IGNORABILITY, AND PROPENSITY SCORE   
 In the previous section, I have established that the difficulty of drawing causal inferences in 

social sciences is rooted in two fundamental causes: (1) units of analysis are all heterogeneous, and 

(2) for any given unit of analysis, we observe the outcome associated with only one, actually 

realized, treatment condition.  Given the combination of these two unavoidable difficulties, how can 

social science researchers study causal effects?  There are two solutions: the experimental solution 

and the observational solution.   

The experimental solution relies on random assignment to eliminate both sources of 

selection bias that we discussed earlier.  Random assignment means that a unit in U receives either 

the treatment or control condition by chance only.  Let   ∥   denote independence.  Random 

assignment ensures:  

 (𝑌1,𝑌0)  ∥  𝐷,       (11) 

so that  

 𝐸(𝑌𝐷=11 ) = 𝐸(𝑌𝐷=01 ) = 𝐸(𝑌1)      (12) 

and 

 𝐸(𝑌𝐷=10 ) = 𝐸(𝑌𝐷=00 ) = 𝐸(𝑌0) .     (13) 

Under these conditions, we can easily compute ATE, TT, and TUT as: 

𝐴𝑇𝐸 = 𝑇𝑇 = 𝑇𝑈𝑇 = 𝐸(𝑌𝐷=11 ) − 𝐸(𝑌𝐷=00 )  
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 In social science research, experimental studies are rare.  Even when assignment into 

experimental conditions is random, subjects’ compliance with assignments may not be random. In 

such cases, the true treatment condition may not be truly independent with respect to potential 

outcomes, as required in equation (11).  In other situations, often called “natural experiments,” it 

may be assumed that factors that affect treatment conditions may be random and extraneous, 

although treatment conditions may not be independent with respect to potential outcomes. In both 

types of situations, we have a general approach called “instrumental variable (IV) estimation.” For a 

variable to qualify as an IV, it must meet the exclusion restriction assumption: it affects the 

likelihood of treatment condition (D) but affects the substantive outcome variable (Y) only 

indirectly via the treatment status (D).  For example, draft lottery may be associated with military 

enlistment but should not affect economic outcomes directly (Angrist 1990).  

A large literature has been developed in the application of IVs in causal inference (Angrist, 

Imbens, and Rubin 1996; Angrist and Pischke 2009; Heckman, Urzua, and Vytlacil 2006).   

Unfortunately, true and strong IVs are difficult to find in practice.  In addition, even when true 

experiments are successfully carried out, or good IVs are found, they are typically based on a 

specific subpopulation at a specific location or time, say students at a particular college, or 

applicants to a particular federally funded program.  Population heterogeneity also makes it 

problematic to generalize findings from such studies based on narrowed-defined subpopulations to 

the general population at large (Manski and Garfinkel 1992).  For these reasons, despite its 

methodological appeal and growing popularity, the experimental approach does not provide a 

satisfactory solution in practice.   

 When random assignment is infeasible, and a suitable IV is unavailable, the researcher may 

resort to the second approach: observational solution.  The basic idea is to collect rich data 

measuring population heterogeneity, called covariates, that pertain to potential systematic 

differences between the treatment and control groups in either the baseline level or the treatment 

effect.  Because only covariates that affect both the treatment assignment and the outcome can 

cause biases to the observed relationship between treatment and outcome (Rubin 1997), the 

researcher hopes that he/she can adequately control for all covariates that simultaneously affect 

the treatment assignment and the outcome.  After the control of the covariates, treatment status is 
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independent of potential outcomes.  This conditional independence assumption is called 

“ignorability,” “unconfoundedness” or “selection on observables.”   Let X denote a vector of 

observed covariates.  The ignorability assumption states:  

 (𝑌1,𝑌0)  ∥  𝐷|𝑿.      (14) 

Comparison of equations (11) and (14) highlight the crucial role of covariates X. Note that the 

ignorability condition is always an unverifiable assumption. While it is written as a statistical 

property in equation (14), whether the assumption is plausible or not is a substantive subject 

matter, as much depends on what covariates are included.  In any event, the researcher can 

tentatively consider the ignorability assumption and then assess its plausibility in a concrete setting 

through sensitivity or auxiliary analyses (Cornfield et al. 1959; DiPrete and Gangl 2004; Harding 

2003; Rosenbaum 2002).   

 Conditioning on X can be difficult in applied research due to the “curse of dimensionality.” 

However, the important work of Rosenbaum and Rubin (1983, 1984) reveals that, under the 

ignorability assumption, it is sufficient to condition on the propensity score as a function of X.  Let 

𝑃(𝐷 = 1|𝑋) denote the propensity score of treatment given X.  Rosenbaum and Rubin essentially 

changed equation (14) to: 

 (𝑌1,𝑌0)  ∥  𝐷|𝑃(𝐷 = 1|𝑿).     (15)     

That is, it is sufficient to condition on the propensity score 𝑃(𝐷 = 1|𝑿).  In practice, the propensity 

score is unknown and can be estimated from observed data, say through a logit model or a probit 

model.  In the current literature on causal inference using observational data, almost all methods 

are based on the propensity score (e.g., Dehejia and  Wahba 1999. Morgan and Harding 2006; Xie, 

Brand, and Jann 2011).   

 It is important to realize that the main function of the propensity score is to balance out the 

distribution of observed covariates X between the treatment group and the control group (within a 

given level of the propensity score).  For this purpose, the absolute level of the propensity score 

does not matter.  What matters is the relative magnitudes of propensity scores associated with 

different values of covariates X.  This is the justification for the common practice of using response-
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based sampling strategy, i.e., combining a dataset for treated units with another dataset for 

untreated units, in constructing propensity scores in the literature.3   

The result of equation (15) states that, under ignorability, treatment condition is 

independent of potential outcomes.  In other words, given a level of the propensity score, there is 

no bias.  Given our earlier discussion stating that bias can manifest in two types, this is tantamount 

to two “no-bias” conditions:  

(1) There is no pre-treatment heterogeneity bias, or Type I selection bias, conditional on p(X).  In 

reference to equation (10), this means 

𝐸[𝑌𝑑=10 |𝑝𝑝(𝑿)]=𝐸[𝑌𝑑=00 |𝑝𝑝(𝑿)]      (16) 

(2) There is no treatment-effect heterogeneity bias, or Type II selection bias, conditional on p(X).   

In reference to equation (10), this means 

𝐸[𝑌𝑑=11 − 𝑌𝑑=10 |𝑝𝑝(𝑿)] = 𝐸[𝑌𝑑=01 − 𝑌𝑑=00 |𝑝𝑝(𝑿)] .    (17) 

Given equation (17), the researcher can apply the naïve estimator  

𝐸(𝑌𝑑=11 ) − 𝐸(𝑌𝑑=00 )  

conditional on the propensity score, because there is no selection bias conditional on the propensity 

score.  That is, if the ignorability assumption is true, we can assume away both sources of bias, or 

systematic differences between treated units and untreated units, at the same level of propensity 

score.  More precisely, we have 

𝐸[𝑌1 − 𝑌0|𝑝𝑝(𝑿)] = 𝐸[𝑌𝐷=11 − 𝑌𝐷=10 |𝑝𝑝(𝑿)] = 𝐸[𝑌𝐷=01 − 𝑌𝐷=00 |𝑝𝑝(𝑿)] 

                 = 𝐸[𝑌𝑑=11 |𝑝𝑝(𝑿)] − 𝐸[𝑌𝑑=00 |𝑝𝑝(𝑿)].              (18) 

Of course, unconditional comparisons of the treatment group and the control group, such as ATE, 

TT, and TUT, involves aggregation of conditional comparisons over the actual distribution of the 

propensity score.   

                                                             

3 Response-based sampling is also called “case-control studies.”  In logit regressions, this means 
that the intercept can be ignored (Breslow 1996; Xie and Manski 1989).   
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UNOBSERVABLE BIAS, TREATMENT-EFFECT HETEROGENEITY BIAS, AND 
COMPOSITION BIAS  

 It is important to realize that ignorability in the form of equation (14) is merely an 

assumption.  Even in situations where the assumption seems plausible, as long as the researcher 

deals with observational data, it is not a verifiable assumption.   Thus, social research that relies on 

the ignorability assumption can always be challenged by the likely possibility that the assumption 

may not hold true in reality.     

 How does the violation of ignorability threaten research findings yielded by methods 

assuming ignorability?  Again, we can answer this question from the two sources of selection bias.  

One possibility is that, even at a given level of propensity score, treated units and untreated units 

may still differ systematically in baseline so that their potential outcomes would be different in the 

absence of treatment.  Another possibility is that even at a given level of propensity score, treated 

and untreated units may still differ systematically in the effects of treatment so that average 

treatment effects would differ between the two groups.   

 Economists have resorted to using unobservable variables to represent the two sources of 

selection bias that remain after the control of propensity score.   Thus, let me call the two sources of 

residual bias respectively “pre-treatment unobservable heterogeneity bias” or “Type I 

unobservable selection bias” and “unobservable treatment-effect heterogeneity bias” or “Type II 

unobservable selection bias.”   It is interesting to note that the fixed effects method widely used in 

social science (e.g., Angrist and Krueger 1999) is defined only as handling Type I unobservable 

selection bias but as powerless regarding Type II unobservable selection bias.  When the treatment 

effect is heterogeneous, the traditional IV approach would only identify the average treatment 

effect of a segment of the population that is induced by the instrument, called Local Average 

Treatment Effect (LATE) (Angrist and Krueger 1999; Angrist, Imbens, and Rubin 1996; Heckman, 

Urzua, and Vytlacil 2006).   

 The use of an unobservable variable in consideration of potential biases, either Type I or 

Type II, has strong support in economic theories.  Let us use research on economic returns to 

college education as an example.  It is plausible that persons who complete college educations may 

have higher innate mental ability than their peers who do not, everything else being equal.  Because 
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mental ability should have a positive effect on earnings, omission of this person-specific factor 

causes what is called “ability bias,” a Type I unobservable selection bias in the direction of over-

estimation of the economic return to college education (Griliches 1977).   Another possibility is that 

the likelihood of completing education is partly driven by heterogeneous returns to college 

education so that persons who actually complete college have on average higher economic returns 

than persons who do not.  This is the comparative advantage model of Willis and Rosen (1979) that 

predicts the “sorting gain bias,” a Type II unobservable selection bias studied heavily by Heckman 

and his associates through the IV approach (Carneiro, Hansen, and Heckman 2003; Carneiro, 

Heckman, and Vytlacil Forthcoming; Heckman, Urzua, and Vytlacil 2006).   

Hence, the literature on causal inference is divided based on whether or not the ignorability 

assumption is adopted.  When it is not, the researcher is concerned with residual selection bias 

conditional on the propensity score that is attributable to unobservable variables.  In this paper, I 

show how another type of selection bias -- “composition bias” -- arises through dynamic processes 

when treatment propensity is systematically associated with heterogeneous treatment effects.  

Fundamentally, composition bias results from aggregation of units across heterogeneous 

subpopulations.   What is interesting about composition bias is that it can arise even when the 

ignorability assumption is satisfied.  Furthermore, there is no need to resort to unobservable 

variables to explain its existence and its consequences.   

To understand what I mean by “composition bias,” it is useful to conceptualize selection into 

treatment as a dynamic process, akin to survival analysis.  A well-known property of a dynamic 

survival process is selective attribution/selection so that the composition of the remaining 

population at risk for selection changes constantly.  That is, as the proportion of treated units in U, p, 

increases from 𝑝𝑝1 to 𝑝𝑝2, the subpopulation of the treated (𝑈1) changes from 𝑈1(𝑝𝑝1) to 𝑈1(𝑝𝑝2), and 

the subpopulation of the untreated (𝑈0) changes from 𝑈0(𝑝𝑝1) to 𝑈0(𝑝𝑝2).  For simplicity, we assume 

a strictly nested structure so that for 𝑝𝑝1 < 𝑝𝑝2,  𝑈1(𝑝𝑝1) is strictly contained in 𝑈1(𝑝𝑝2).  Of course, this 

also means that 𝑈0(𝑝𝑝2) is strictly contained in 𝑈0(𝑝𝑝1).  Resulting changes in the composition of 𝑈1 

and 𝑈0 give rise to biases in aggregate measures of treatment effects, such as TT and TUT.  I call 

such biases “composition biases.”   



Population Heterogeneity and Causal Inference                                                                          14 

 

For convenience in my discussion, I now define a new quantity of interest: “Increment 

Treatment Effect” (ITE).  For 𝑝𝑝1 < 𝑝𝑝2,  

𝐼𝑇𝐸(𝑝𝑝1,𝑝𝑝2) = 𝐸[𝑌1 − 𝑌0|𝑖 ∈ 𝑈1(𝑝𝑝2)\𝑈1(𝑝𝑝1)],        (19) 

where 𝑖 is the ith unit in U, and 𝑈1(𝑝𝑝2)\𝑈1(𝑝𝑝1) is the complement of 𝑈1(𝑝𝑝1) relative to 𝑈1(𝑝𝑝2), 

additional units recruited into treatment when the proportion of treatment increases from  𝑝𝑝1 to 𝑝𝑝2.  

In other words, ITE is the average treatment effect for these incremental units when 𝑝𝑝 = 𝑝𝑝1 changes 

to 𝑝𝑝 = 𝑝𝑝2.  Like TT and TUT, ITE is the average effect of a group.  Differing from TT and TUT, which 

are defined by a unit’s observed status of treatment, ITE is defined by a latent attribute: a unit’s 

treatment status changes from D=0 to D=1 when 𝑝𝑝  increases from 𝑝𝑝1 to 𝑝𝑝2. Thus, we can 

alternatively define ITE as:  

𝐼𝑇𝐸(𝑝𝑝1,𝑝𝑝2) = 𝐸[𝑌1 − 𝑌0|𝐷𝑝1 = 0,𝐷𝑝2 = 1],           (20) 

where 𝐷𝑝1and 𝐷𝑝2 are the treatment statuses under, respectively, 𝑝𝑝 = 𝑝𝑝1 and 𝑝𝑝 = 𝑝𝑝2.  Equations (19) 

and (20) are discrete forms of ITE when p increases from  𝑝𝑝1 to 𝑝𝑝2.  The limit form of ITE can be 

defined as:  

𝐼𝑇𝐸(𝑝𝑝) = lim
𝛿→0

𝐸[𝑌1 − 𝑌0|𝑖 ∈ 𝑈1(𝑝𝑝 + 𝛿)\𝑈1(𝑝𝑝)]    

                        = lim
𝛿→0

 𝐸[𝑌1 − 𝑌0|𝐷𝑝 = 0,𝐷𝑝+𝛿 = 1].                (21) 

It is important to note that ITE is different from a related quantity of interest -- Marginal 

Treatment Effect (MTE) -- which plays a key role in the IV approach to estimating heterogeneous 

treatment effect developed by Heckman and his associates (Björklund and Moffitt 1987; Carneiro, 

Heckman, and Vytlacil Forthcoming; Heckman, Urzua, and Vytlacil 2006).  MTE is the expected 

treatment effect at the marginal point at which a latent factor determining a unit’s treatment status 

is neutral – i.e., does not favor either treatment or control.   That is, MTE is the average treatment 

effect of a subpopulation defined by units’ intrinsic characteristics, i.e., relatively homogeneous 

propensities of treatment.  In contrast, ITE is the average treatment effect of a relatively 

heterogeneous subpopulation defined by treatment regimes.   
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Another way to consider the differences between MTE and ITE is to see how a system in an 

equilibrium state may be changed by an external shock. For MTE, the latent propensity of treatment 

of a certain group of units (or even the entire population) is altered by an IV.  It is this change in 

propensity that shifts the proportion being treated. For ITE, the proportion being treated is the 

exogenous change. It is the exogenous change in the proportion being treated that affects which 

units are actually included as increments in the treatment group, even though the relative 

magnitudes in the intrinsic propensity of treatment remain unchanged. In a sense, we can 

conceptualize changes in p (say from 𝑝𝑝1 to 𝑝𝑝2) as an IV, as it affects all units’ likelihoods of being 

treated but not the outcome directly. However, we assume that this inducement effect is at the 

macro regime level; how the macro-level change may result in individual-level changes in treatment 

status still depends on intrinsic heterogeneous propensities of treatment across units in U.   

Why may ITE be a useful quantity of interest, distinct from MTE?  Because ITE and MTE 

provide different perspectives when an inducement occurs so that more units are treated than in an 

equilibrium state.  MTE views the change of treatment status from the supply perspective.  As the 

propensities of treatment for certain units are changed due to an IV, we ask which units may have 

changed their treatment status from not being treated to being treated.  In contrast, ITE views a 

change from the demand perspective.  As the proportion treated is changed at the regime level, we 

ask who is being newly recruited into the treatment group.   

The usefulness of ITE is best illustrated in its sensitivity to the proportion treated, even 

when we keep all individual-level heterogeneity intact.  This occurs because selection into 

treatment is a dynamic process (akin to survival analysis), so that net “composition” changes with 

the proportion of the subpopulation being treated (p) (Vaupel and Yashin 1985).  When p is small, 

an increment in p is likely to recruit units with high propensities of treatment; ITE is then an 

average of treatment effects weighted heavily by high-propensity units.  When p is high, high-

propensity units are already in the treatment group; an increment in p is likely to recruit units with 

relatively lower propensities of treatment, because the representation of high-propensity units in 

the untreated subpopulation decreases with p.  Consequently, ITE is weighted towards low-

propensity units as p increases.  Because the change of ITE as a function of p is purely a result of the 

compositional changes in the treated and untreated subpopulations, I call the bias resulting from 

this dynamic process the “composition bias.”   
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As is true for MTE, we can also aggregate ITE over p to obtain TT, TUT, and ATE.  Note that in 

our setup, TT and TUT depend on proportion treated and thus functions of p.  A surprising result is 

that very simple expressions link ITE to TT and TUT, shown as follows.      

𝑇𝑇(𝑝𝑝) = 1
𝑝 ∫ 𝐼𝑇𝐸(𝑢)𝑑𝑢𝑝

0 .         (22) 

𝑇𝑈𝑇(𝑝𝑝) = 1
1−𝑝 ∫ 𝐼𝑇𝐸(𝑢)𝑑𝑢1

𝑝 .       (23) 

𝐴𝑇𝐸 = ∫ 𝐼𝑇𝐸(𝑢)𝑑𝑢1
0 .        (24) 

A comparison of equations (22) and (23) reveals a selection bias, as in general,  

𝑇𝑇(𝑝𝑝) ≠ 𝑇𝑈𝑇(𝑝𝑝) 

Note that this bias arises even when the ignorability assumption is satisfied.  The source of this bias 

is a compositional change in either the 𝑈1 or 𝑈0 subpopulation, when the treatment proportion changes.   

A TOY EXAMPLE FOR ILLUSTRATION  

 We now illustrate how the composition bias comes out in a dynamic process with a simple 

toy example.   We conduct a simulation with a closed population of 1,000 units that are divided into 

ten evenly sized (n=100) strata (denoted by j, j = 1 . . .10).   We specify that all 100 units in each 

stratum have the same intrinsic propensity potential (𝑃𝑗∗) and the same treatment effect (𝛿𝑗).  That 

is, we allow for heterogeneity in both intrinsic propensity of treatment and treatment effect across 

the ten strata, but for simplicity we assume homogeneity across the 100 units within each stratum.  

We specify 𝑃𝑗∗ to vary linearly from 0.05 to 0.95.  Likewise, we specify 𝛿𝑗to increase linearly from 50 

to 950, producing a correlation of 1 between the two parameters across the 10 strata.  In this 

artificial example, ATE = 500.  The detailed setup for the toy example is given in Table 1.   

 For the convenience of illustration, I also make increments discrete, developing in ten steps: 

[0.0, 0.1], [0.1, 0.2], [0.2, 0.3], [0.3, 0.4], [0.4, 0.5], [0.5, 0.6], [0.7, 0.8], [0.8, 0.9], and [0.9, 1.0].  For 

the first round of increment [0.0, 0.1], 100 units are moved from the untreated subpopulation (U0) 

to the treated subpopulation (U1).  However, the distribution of these 100 units across the ten strata 

is not even.  Again, for simplicity, I use expected numbers rather than realized numbers when 

employing simple random sampling.  This strategy is tantamount to ignoring the influence of the 

sample size, which is arbitrarily set at 1,000.  The first round of increments from 𝑝𝑝 = 0.0 to 𝑝𝑝 = 0.1 

results in 100 new units being treated.  The detailed results for the first round of increments are 

given in the first panel of Table 2.   



Population Heterogeneity and Causal Inference                                                                          17 

 

Table 1: Setup of a Toy Example. A Hypothetical Population (N = 1,000) with Ten Strata 

Note: total Population is set to be 1,000.   ATE = 500.   
 

 

Table 2: Dynamic Recruitment of Treated Units at the First Two Rounds (𝑝𝑝 = 0.0 to 𝑝𝑝 = 0.1;  𝑝𝑝 =
0.1 to 𝑝𝑝 = 0.2)  

 First Round (𝑝𝑝 = 0.0 to 𝑝𝑝 = 0.1) Second Round (𝑝𝑝 = 0.1 to 𝑝𝑝 = 0.2) 
Strata 

(j) ∆U1,j U1,j U0,j ∆U1,j U1,j U0,j 
 

1 1 1 99 1 2 98 
2 3 3 97 3 6 94 
3 5 5 95 5 10 90 
4 7 7 93 8 15 85 
5 9 9 91 9 18 82 
6 11 11 89 11 22 78 
7 13 13 87 13 26 74 
8 15 15 85 15 30 70 
9 17 17 83 16 33 67 

10 19 19 81 18 37 63 
Total 100 100 900 100 200 800 

Effect        
Measure 
 

ITE 
665 

 

TT 
665 

 

TUT 
482 

 

ITE 
652 

TT 
659 

TUT 
460 

 

Note: U1,j and U0,j respectively denote the treated and untreated groups in the jth stratum. For each 
round of increments, U1,j to denote the newly recruited units from the jth stratum that change the 
treatment status from D=0 to D=1, i.e., increments to U1,j.    

Strata (j) Propensity Potential (𝑃𝑗∗) Treatment Effect (𝛿𝑗) Number of Units (𝑛𝑗) 

1 0.05   50 100 
2 0.15 150 100 
3 0.25 250 100 
4 0.35 350 100 
5 0.45 450 100 
6 0.55 550 100 
7 0.65 650 100 
8 0.75 750 100 
9 0.85 850 100 

10 0.95 950 100 



Population Heterogeneity and Causal Inference                                                                          18 

 

 In Table 2, U1,j and U0,j respectively denote the treated and untreated groups in the jth 

stratum.  ∆U1,j denotes the newly recruited units from the jth stratum that changed the treatment 

status from 𝐷 = 0 to 𝐷 = 1, or increments to U1,j.  Because this is the first round of increments from 

𝑝𝑝 = 0.0 to 𝑝𝑝 = 0.1, ∆ U1,j (the increment to the treated) , given in column 2, is identical to U1,j itself 

(column 3).  The untreated subpopulation, U0,j, is simply the complement of U1,j, given in column 4.  

It is apparent that the 100 newly treated cases (the second column, labeled ∆U1,j) are not evenly 

distributed across the ten strata, although we started with equal-sized strata in the population.  

Because the propensity potential 𝑃𝑗∗   in a higher-numbered stratum is greater than that in a lower-

numbered stratum, the number of units to be recruited into treatment in a higher-numbered 

stratum is also higher than that in a lower-numbered stratum.  In fact, for the first round of 

increments, the ratio in the number being treated between two strata is directly proportional to the 

ratio in propensity potential (𝑃𝑗∗).  For example, the ratio in treated cases between stratum 10 and 

stratum 1 is 19, reflecting their ratio in 𝑃𝑗∗: 0.95/0.05.  Besides ∆U1,j, U1,j and U0,j are also unequally 

distributed across strata.  The uneven distributions constitute different weights in the calculation of 

respective treatment effects, given in the last row.  For this round, ITE = TT at 665, much higher 

than TUT at 482.  None of them is equal to ATE at 500.   

 We now conduct the second round of increments, from 𝑝𝑝 = 0.1 to 𝑝𝑝 = 0.2.  We use the same 

recruiting mechanism and keep the intrinsic properties of all units intact.  A key difference between 

the second round and the first round of increments is a compositional change in the exposure 

population from which increments are drawn.   For the first round, the exposure population is the 

original population with an equal distribution across strata, shown in the last column in Table 1 

(labeled 𝑛𝑗).  For the second round, the exposure population is now changed to the untreated 

subpopulation in the first round, shown in the fourth column in Table 2 (labeled U0,j).  Due to this 

difference in exposure composition, the resulting increments in the second round, shown in the 

fifth column (labeled ∆U1,j) have a different across-strata distribution than its counterparts in the 

first round (second column, also labeled ∆U1,j).  Comparing strata 10 and 1 again, for example, we 

see the ratio in ∆U1,j between stratum 10 and stratum 1 to be reduced to 18, from 19 in the first 

round.   



Population Heterogeneity and Causal Inference                                                                          19 

 

 The reason for the decline in the representation of high-numbered strata in ∆U1,j  in the 

second round compared to the first round is simple.  Because high-numbered strata have higher 

intrinsic propensity potentials (𝑃𝑗∗), they are over-represented in ∆U1,j  in the first round and thus in 

U1,j .  As a result, higher-numbered strata are now under-represented in U0,j, which serves as the 

exposure population for the next round  of increments.  Given the fixed propensity potential (𝑃𝑗∗), a 

lower representation in the exposure population results in a lower representation in the newly 

recruited units, i.e., ∆U1,j  in the second round.    

 In fact, this dynamic process can continue and further compound the compositional process.  

In general, units with higher intrinsic propensity potentials are likely to be recruited into treatment 

when p is low, while units with lower intrinsic propensity potentials are likely to be recruited into 

treatment only when p is high.  When intrinsic propensity and treatment effects are positively 

correlated, as is the case in this toy example, a positive selection bias arises due to sorting so that 

TT>TUT.  In Figure 1, I present the full results when I carried out the toy example to its end, all the 

way to 𝑝𝑝 = 1.0 with 0.1 as the increment interval.  In the figure, I present four lines as functions of 

the proportion treated (𝑝𝑝).   
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ITE TT TUT TT-TUT



Population Heterogeneity and Causal Inference                                                                          20 

 

 As we discussed earlier, ITE begins at a high level at 665 in the first round.  It coincides with 

TT in round one and then diverges from TT by moving downward at a faster speed than that of TT.  

In the eighth round (𝑝𝑝 = 0.7 to 𝑝𝑝 = 0.8), ITE is actually below ATE (which is 500).  This shows that 

ITE is highly sensitive to changes in the composition of U0,j in the previous rounds.  In contrast, TT is 

cumulative, as the average of ITE in earlier rounds (equation 22), and it declines more slowly.  Note 

that 𝑇𝑇(𝑝𝑝) > 𝐴𝑇𝐸 for all 𝑝𝑝, due to our setup for a positive selection.  However, the gap between TT  

and ATE  diminishes gradually over 𝑝𝑝, especially after the eighth round (𝑝𝑝 = 0.7 to 𝑝𝑝 = 0.8).  

Similarly, TUT is also cumulative, but reversely from 𝑝𝑝 = 1.0 backwards.  We normalize that 

TUT(𝑝𝑝 = 1.0) is undefined.  Because of the way we define ITE in discrete intervals, 𝑇𝑈𝑇(𝑝𝑝 = 0.9) =

𝐼𝑇𝐸(𝑝𝑝 = 0,9,1.0) in our example. We also observe that 𝑇𝑈𝑇(𝑝𝑝) < 𝐴𝑇𝐸 for all 𝑝𝑝.  Furthermore, as in 

the case of TT, TUT also trends downward with 𝑝𝑝.  This last result is sensible in light of the 

relationship between TUT and ITE, but I did not know about it until I obtained the results from the 

toy experiment. 

 One way to evaluate the Type II selection bias is to measure the sorting gain (or loss), the 

difference between TT and TUT.  Hence, in Figure 1, I present 𝑇𝑇 − 𝑇𝑈𝑇 as a function of the 

treatment proportion 𝑝𝑝.   A counterintuitive finding from this exercise is that the amount of bias as 

measured by the sorting gain actually increases, rather than decreases, as the proportion treated 

increases.  This is due to the fact that the downward trend of 𝑇𝑈𝑇is steeper than that of 𝑇𝑇.  This 

pattern results from the shape of ITE, as the decline of ITE is slower when 𝑝𝑝 is small but accelerates 

when 𝑝𝑝 is close to 1.  The increasing trend in the amount of bias depicted in Figure 1 is surprising 

because one may think that, as treatment extends to a larger and larger portion of a population, 

treated units should become less and less selective (which we show is true), and thus selection bias 

should decline (which is not true).  Of course, our conclusion is based on using TUT instead of ATE 

as the reference for measuring the amount of bias.  In our example, as 𝑝𝑝 increases, units being 

treated become less positively selective, but units not being treated become more negatively 

selective.  Although the two trends are in the same direction, the decline in selectivity among the 

treated is slower than the change in selectivity among the untreated.  In other words, by the time 

almost every unit in a population is treated, only those with extremely low intrinsic propensities of 

treatment remain in the untreated subpopulation – i.e., severe selectivity.   
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DISCUSSION AND CONCLUSION 

 Due to the ubiquity of heterogeneity in social phenomena, it is impossible to draw causal 

inferences at the individual level.  All efforts to draw causal inferences in social science must take 

place at the group level.  However, comparison of groups is not possible without some way of 

combining intrinsic heterogeneous individuals into relatively homogeneous groups.  This is a 

fundamental dilemma facing all researchers in social science.   

 It is a truism that any group-level comparison can be further decomposed into comparisons 

of sub-groups.  For causal inference, it is now well known that a useful dimension for 

decomposition is the propensity score, which summarizes information in a multi-dimensional space 

from multivariate covariates into a univariate variable.  Therefore, one potential source of 

heterogeneity that should receive particular attention in causal inference is the interaction between 

the treatment effect and the propensity score (Xie, Brand, and Jann 2011).  Such interactions can be 

detected without any new requirement, as this can be done under the assumption of ignorability.  

When such interactions are found, however, the interpretation of the results may differ.  If the 

researcher believes that the ignorability is true, the estimated effect heterogeneity may be subject 

to generalizations, as discussed in this paper.  However, the researcher may alternatively interpret 

the heterogeneous pattern in the estimated effects as an indication that the selection process into 

treatment may be selective, driven by unobserved factors (Xie and Wu 2005).    

All quantities of interest at the group level, such as TT and TUT, are essentially weighted 

averages of treatment effects across subgroups.  Therefore, composition is important in causal 

inference.  In this paper, I have shown the presence of “composition bias,” which is a form of 

selection bias.  This composition bias is generated by a dynamic process when the treatment 

proportion changes.   Interestingly, this form of bias selection can be generated even under the 

ignorability assumption.   All that is required is the combination of three things: (1) intrinsic 

heterogeneity in treatment propensity, (2) intrinsic heterogeneity in treatment effects, and (3) a 

correlation between heterogeneity in treatment propensity and heterogeneity in treatment effects.  

Under these simple conditions, all permissible under the ignorability assumption, a classic scenario 

for selection bias may arise, units more responsive to treatment being more likely to receive 

treatment than units less responsive (Roy 1951; Willis and Rosen 1979).    



Population Heterogeneity and Causal Inference                                                                          22 

 

A composition bias is essentially driven by the fact that units with higher intrinsic 

propensity of treatment are likely to be over represented when the treatment proportion is small.  

Their presence in the exposure population however is reduced by their entry into the treatment 

group.   As the treatment proportion expands, the degree of over-presentation of units with high 

intrinsic propensities among the newly recruited into treatment declines.   This shift in composition 

among newly recruited increments away from high propensity toward low propensity results in 

changes in average treatment effects, regardless of how those effects are calculated.  In short, I have 

demonstrated in this paper that treatment effects calculated over heterogeneous populations are 

highly susceptible to compositional shifts.  Researchers should always be mindful of the population 

or sub-population of interest when deriving and interpreting average causal estimates from 

potentially heterogeneous subgroups.   

A substantive example would be the administration of a medical treatment or social 

intervention on a graduated schedule.  Let us assume that participation is need-based,  the poorest 

persons being most eligible and thus chosen first, and, further, that the poorest persons would also 

stand to benefit most from treatment.  Under these conditions, individuals selected at later stages 

(i.e., becoming eligible only after the eligibility cut-point is moved up) would exhibit lower average 

treatment effects simply by virtue of coming from a less responsive subpopulation.   

Our results should also serve as a warning regarding efforts to extend research results from 

a small-scale study, be it observed or experiment, beyond the setting in which the study was 

conducted.  Population heterogeneity means not only that treated units may be incomparable to 

untreated units in the study – an issue of internal validity – but also that external validity can be 

difficult to establish.  As the researcher generalizes results from a small- scale study to the general 

population, we cannot know whether the subjects in the study are comparable to those in the 

population.  The potential systematic differences between the subjects in the study and the general 

population, called “compositional differences” in this paper, may dramatically alter the average 

treatment effect.    
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