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An alternative strategy to analyze bivariate and
multivariate contingency tables is ASSOCIATION
MODELS based on LOG-LINEAR MODELING. Log-linear
models allow one to specify and analyze different and
complex patterns of associations, whereas association
coefficients give a summary measure.

Association coefficients measure the strength of
the relation between two variables. Users oftentimes
demand guidelines to interpret the strength, but gen-
eral guidelines are impossible. The strength of an
association depends on the sample’s homogeneity, the
reliability of the variables, and the type of relationship
between the variables. In psychological experiments
(very homogeneous sample, variables with high relia-
bility, direct casual link), a coefficient of 0.4 may signal
weak correlation, whereas the same value could be sus-
piciously high in a sociological survey (heterogeneous
sample, lower reliability, indirect causal links). Hence,
when fixing threshold values, it is important to consider
these factors along with the results of previous studies.

—Johann Bacher

REFERENCES

Daniels, H. E. (1944). The relation between measures of corre-
lation in the universe of sample permutations. Biometrika,
35, 129-135.

Healey, J. E (1995). Statistics: A tool for social research
(3rd ed.). Belmont, CA: Wadsworth.

Kendall, M. G. (1962). Rank correlation methods (3rd ed.).
London: Griffin.

SPSS. (2002, August). Crosstabs. In SPSS 11.0 statistical algo-
rithms [online]. Available: http://www.spss.com/tech/stat/
algorithms/11.0/crosstabs.pdf

ASSOCIATION MODEL

Although the term ASSOCIATION is used broadly,
association model has a specific meaning in the litera-
ture on CATEGORICAL DATA ANALYSIS. By association
model, we refer to a class of statistical models that fit
observed frequencies in a cross-classified table with
the objective of measuring the strength of association
between two or more ordered categorical variables.
For a two-way table, the strength of association being
measured is between the two categorical variables that
comprise the cross-classified table. For three-way or

higher-way tables, the strength of association being .
measured can be between any pair of ordered categor-
ical variables that comprise the cross-classified table.
Although some association models make use of the
a priori ordering of the categories, other models do
not begin with such an assumption and indeed reveal
the ordering of the categories through estimation. The
association model is a special case of a LOG-LINEAR
MODEL or log-bilinear model.

Leo Goodman should be given credit for having
developed association models. His 1979 paper, pub-
lished in the Journal of the American Statistical Asso-
ciation, set the foundation for the field. This seminal
paper was included along with other relevant papers
in his 1984 book, The Analysis of Cross-Classified
Data Having Ordered Categories. Here 1 first present
the canonical case for a two-way table before dis-
cussing extensions for three-way and higher-way
tables. I will also give three examples in sociology and
demography to illustrate the usefulness of association
models.

GENERAL SETUP FOR A TWO-WAY
CROSS-CLASSIFIED TABLE

For the cell of the ith row and the jth column (i =
1,...,7,and j = 1, ..., J) in a two-way table of R
and C, let f;; denote the observed frequency and F;;
the expected frequency under some model. Without
loss of generality, a log-linear model for the table can
be written as follows:

log(Fij) = p + puff + u§ + uC, (1)

where u is the main effect, u® is the row effect, €
is the column effect, and pRC is the interaction effect
on the logarithm of the expected frequency. All the
parameters in equation (1) are subject to ANOVA-type
normalization constraints (see Powers & Xie, 2000,
pp. 108-110). It is common to leave u® and u€
unconstrained and estimated nonparametrically. This
practice is also called the “saturation” of the marginal
distributions of the row and column variables. What
is of special interest is w®C: At one extreme, %€
may all be zero, resulting in an independence model.
At another extreme, ©XC may be “saturated,” taking
(I — 1)(J — 1) degrees of freedom, yielding exact
predictions (F;; = f;j for all i and j).
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Typically, the researcher is interested in fitting
models between the two extreme cases by altering
specifications for uRC. It is easy to show that all
ODDS RATIOS in a two-way table are functions of
the interaction parameters (uRC). Let 6; ; denote a
local log-odds ratio for a 2 x 2 subtable formed from
four adjacent cells obtained from two adjacent row
categories and two adjacent column categories:

60ij = log{l Fi+1ygi+1 Fijl/[Fa+1yj Figi+nlh
i=1....,I1-1,j=1,...,J—1.
Let us assume that the row and column variables
are ordinal on some scales x and y. The scales may

be observed or latent. A linear-by-linear association
model is as follows:

log(Fij) = p+ pf + u§ + Bxiyj, (@)

where B is the parameter measuring the association
between the two scales x and y representing, respec-
tively, the row and column variables. If the two scales
x and y are directly observed or imputed from external
sources, estimation of equation (2) is straightforward
via MAXIMUM LIKELTHOOD ESTIMATION for log-linear
models.

ASSOCIATION MODELS FOR
A TWO-WAY TABLE

If we do not have extra information about the two
scales x and y, we can either impose assumptions about
the scales or estimate the scales internally. Different
approaches give rise to different association models.
Below, I review the most important ones.

Uniform Associatioh

If the categories of the variables are correctly
ordered, the researcher may make a simplifying
assumption that the ordering positions form the scales
(i.e., xi =i, y; = j). Let the practice be called integer
scoring. The integer-scoring simplification results in
the following uniform association model:

log(Fij) = p + uf + u§ + Bij. A3)

The researcher can estimate the model with actual
data to see whether this assumption holds true.

Row Effect and Column Effect Models

Although the uniform association model is based on
integer scoring for both the row and column variables,

the researcher may wish to invoke integer scoring only
for the row or the column variable. When integer scor-
ing is used only for the column variable, the resulting
model is called the row effect model. Conversely, when
integer scoring is used only for the row variable, the
resulting model is called the column effect model. Tak-
ing the row effect model as an example, we can derive
the following model from equation (2):

log(Fij) = p+uf +u$ +jdi. @

This model is called the row effect model because
the latent scores of the row variable (¢; = Bx;) are
revealed by estimation after we apply integer scoring
for the column variable. That is, ¢; is the “row effect”
on the association between the row variable and the
column variable. Note that the terms row effect and
column effect here have different meanings than uf
and p,f, which are fitted to saturate the marginal
distributions of the row and column variables.

Goodman's RC Model

The researcher can take a step further and treat
both the row and column scores as unknown. Two of
Goodman’s (1979) association models are designed to
estimate such latent scores. Goodman’s Association
Model I simplifies equation (1) to the following:

log(Fij) = p + uf + ul + joi +ip;,  (5)

where ¢; and ¢; are, respectively, unknown row and
column scores as in the row effect and column effect
models. However, it is necessary to add three normal-
ization constraints to uniquely identify the (I + J)
unknown parameters of ¢; and ¢;.

Goodman’s Association Model I requires that both
the row and column variables be correctly ordered a
priori because integer scoring is used for both, as shown
in equation (5). This requirement means that the model
is not invariant to positional changes in the categories
of the row and column variables. If the researcher has
no knowledge that the categories are correctly ordered
or in fact needs to determine the correct ordering of the
categories, Model I is not appropriate. For this reason,
Goodman’s Association Model I has received the most
attention. It is of the following form:

log(Fij) = p + uf + u$ + Boio;. (6)

where B is the association parameter, and ¢; and ¢ ; are
unknown scores to be estimated. Also, ¢; and ¢; are




Association Model! 3

Table 1 Comparison of Association Models

Model pre DF, o

Uniform association Bij 1 B

Row effect Jobi a-1 Giv1 — &

Column effect ig; -1 Qi1 — &

Association Model I Jo:i +ig; I+7J-3 @iv1 — &)+ (@i — @)
Association Model 1T (RC) Boid; I1+7J-3 (i1 — 9 ) D)1 — ¢5)

subject to four normalization constraints because each
requires the normalization of both location and scale.

As equation (6) shows, the interaction compo-
nent (uRC) of Goodman’s Association Model I is in
the form of multiplication of unknown parameters—
log-bilinear specification. The model is also known as
the log-multiplicative model, or simply the RC model.
The RC model is very attractive because it allows the
researcher to estimate unknown parameters even when
the categories of the row and the column variables may
not be correctly ordered. All that needs to be assumed
is the existence of the ordinal scales. The model can
reveal the orders through estimation.

Table 1 presents a summary comparison of the
aforementioned association models. The second
column displays the model specification for the inter-
action parameters (1£R€). The number of degrees of
freedom for each 1 € specification is given in the third
column (D F,,). If there are no other model parameters
to be estimated, the degrees of freedom for a model
are equal to (I — 1)(J — 1) — DF,,. The formula for
calculating the local log-odds ratio is shown in the last
column.

Goodman’s Association Model I (RC model) can
be easily extended to have multiple latent dimensions
so that uRC of equation (1) is specified as

ulC =" Butim@im, ()

where the summation sign is with respect to all possible
m dimensions, and the parameters are subject to neces-
sary normalization constraints. Such models are called
RC(M) models. See Goodman (1986) for details.

ASSOCIATION MODELS FOR THREE-WAY
AND HIGHER-WAY TABLES

Below, I mainly discuss the case of a three-way
table. Generalizations to a higher-way table can be
easily made. Let R denote row, C denote column,
and L denote layer, with their categories indexed

respectively by i (i = 1,...,D,j (j = 1,...,J),
and k (k = 1,..., K). In a common research setup,
the researcher is interested in understanding how the
two-way association between R and C depends on
levels of L. For example, in a trend analysis, L may
represent different years or cohorts. In a comparative
study, L may represent different nations or groups.
Thus, research attention typically focuses on the asso-
ciation pattern between R and C and its variation across
layers.

Let F;j; denote the expected frequency in the ith
row, the jth column, and the kth layer. The saturated
log-linear model can be written as follows:

log(Fiji) =+ uff + 1§ +ug +ufic
SR a7 R O
In a typical research setting, interest centers on the
variation of the RC association across layers. Thus,

the baseline (for the null hypothesis) is the following
conditional independence model:

log(Fiji) = p + uf + u§
+ ug +ufil +usE )

That is, the researcher needs to specify and estimate
uRC and uRCL to understand the layer-specific RC
association.

There are two broad approaches to extending asso-
ciation models to three-way or higher-way tables. The
first is to specify an association model for the typical
association pattern between R and C and then estimate
parameters that are specific to layers or test whether
they are invariant across layers (Clogg, 1982a). The
general case of the approach is to specify R and
uRCL in terms of the RC model so as to change
equation (8) to the following:

log(Fiji) = p + uf + u§ + uf

+ il + uGE + Bedupie.  (10)
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That is, the B, ¢, and ¢ parameters can be layer
specific or layer invariant, subject to model specifi-
cation and statistical tests. The researcher may also
wish to test special cases (i.e., the uniform association,
column effect, and row effect models) where ¢ and/or
@ parameters are inserted as integer scores rather than
estirated.

. The second approach, called the log-multiplicative
layer-effect model, or the “unidiff model,” is to allow a
flexible specification for the typical association pattern
between R and C and then to constrain its cross-layer
variation to be log-multiplicative (Xie, 1992). That is,
we give a flexible specification for . ®C but constrain
uRCL 5o that equation (8) becomes the following:

log(Fiji) = p+ puf + 1§ + g
+ uhl+uSE o (D)

With the second approach, the RC association
is not constrained to follow a particular model and
indeed can be saturated with (/ — 1)(J — 1) dummy
variables. In a special case in which the typical asso-
ciation pattern between R and C is the RC model, the
two approaches coincide, resulting in the three-way
RC L log-multiplicative model. Powers and Xie (2000,
pp. 140-145) provide a more detailed discussion of the
variations and the practical implications of the second
approach. It should be noted that the two approaches
are both special cases of a general framework proposed
by Goodman (1986) and extended in Goodman and
Hout (1998).

APPLICATIONS

Association models have been used widely in socio-
logical research. Below, I give three concrete examples.
The first example is one of scaling. See Clogg (1982b)
for a detailed illustration of this example. Clogg aimed
to scale an ordinal variable that measures attitude on
abortion. The variable was constructed from a Guttman
scale, and the cases that did not conform to the scale
response patterns were grouped into a separate cate-
gory, “error responses.” As is usually the case, scaling
required an “instrument.” In this case, Clogg used a
measure of attitude on premarital sex that was collected
in the same survey. The underlying assumption was that
the scale of the attitude on abortion could be revealed
from its association with the attitude on premarital sex.
Clogg used the log-multiplicative model to estimate
the scores associated with the different categories of
the two variables. Note that the log-multiplicative RC

model assumes that the categories are ordinal but not
necessarily correctly ordered. So, estimation reveals
the scale as well as the ordering. Through estimation,
Clogg showed that the distances between the adjacent
categories were unequal and that those who gave “error
responses” were in the middle in terms of their attitudes
on abortion.

_The second example is the application of the log-
multiplicative layer-effect model to the cross-national
study of intergenerational mobility (Xie, 1992). The
basic idea is to force cross-national differences to be
summarized by layer-specific parameters [i.e., ¢} of
equation (11)] while allowing and testing different
parameterizations of the two-way association between
father’s occupation and son’s occupation (i.e., ¥;;).
The ¢, parameters are then taken to represent the social
openness or closure of different societies.

The third example, which involves the study of
human fertility, is nonconventional in the sense that
the basic setup is not log-linear but log-rate. The data
structure consists of a table of frequencies (births)
cross-classified by age and country and a correspond-
ing table of associated exposures (women-years). The
ratio between the two yields the country-specific and
age-specific fertility rates. The objective of statistical
modeling is to parsimoniously characterize the age pat-
terns of fertility in terms of fertility level and fertility
control for each country. In conventional demography,
this is handled using Coale and Trussell’s Mm method.
Xie and Pimentel (1992) show that this method is
equivalent to the log-multiplicative layer-effect model,
with births as the dependent variable and exposure as
an “offset.” Thus, the M and m parameters of Coale and
Trussell’s method can be estimated statistically along
with other unknown parameters in the model.

ESTIMATION

Estimation is straightforward with the uniform, row
effect, column effect, and Goodman’s Association
Model I models. The user can use any of the com-
puter programs that estimate a log-linear model. What
is complicated is when the RC interaction takes the
form of the product of unknown parameters—the log-
multiplicative or log-bilinear specification. In this case,
a reiterative estimation procedure is required. The
basic idea is to alternately treat one set of unknown
parameters as known while estimating the other and
to continue the iteration process until both are stabi-
lized. Special computer programs, such as ASSOC and
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CDAS, have been written to estimate many of the asso-
ciation models. User-written subroutines in GLIM and
STATA are available from individual researchers. For
any serious user of association models, I also recom-
mend Lem, a program that can estimate different forms
of the log-multiplicative model while retaining flexibil-
ity. See my Web site www.yuxie.com for updated infor-
mation on computer subroutines and special programs.

—Yu Xie
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ASSUMPTIONS

- Assumptions are ubiquitous in social science.
In theoretical work, assumptions are the starting
axioms and postulates that yield testable implica-
tions spanning broad domains. In empirical work,
statistical procedures typically embed a variety of
assumptions, for example, concerning measurement

properties of the variables and the distributional form
and operation of unobservables (such as HOMOSKEDAS-
TICITY or NORMAL DISTRIBUTION of the ERROR).
Assumptions in empirical work are discussed in the
entries for particular procedures (e.g., ORDINARY LEAST
SQUARES); here we focus on assumptions in theories.

The purpose of a scientific THEORY is to yield
testable implications concerning the relationships
between observable phenomena. The heart of the
theory is its set of assumptions. The assumptions
embody what Popper (1963) calls “guesses” about
nature—guesses to be tested, following Newton’s
vision, by testing their logical implications. An essen-
tial feature of the assumption set is internal logical
consistency. In addition, three desirable properties of a
theory are as follows: (a) that its assumption set be as
short as possible, (b) that its observable implications be
as many and varied as possible, and (c) that its observ-
able implications include phenomena or relationships
not yet observed, that is, novel predictions.

Thus, a theory has a two-part structure: a small
part containing the assumptions and a large and ever-
growing part containing the implications. Figure 1
provides a visualization of the structure of a theory.

A theory can satisfy all three properties above and
yet be false. Thatis, one can invent an imaginary world,
set up a parsimonious set of postulates about its opera-
tion, deduce a wide variety of empirical consequences,
and yet learn through empirical test that no known
world operates in conformity with the implications
derived from the postulated properties of the imaginary
world. That is why empirical analysis is necessary, or,
put differently, why theoretical analysis alone does not
suffice for the accumulation of reliable knowledge.

A note on terminology: Assumption is a general
term, used, as noted earlier, in both theoretical and
empirical work. Sharper terms sometimes used in
theoretical work include axiom, which carries the con-
notation of self-evident, and postulate, which does not,
and is therefore more faithful to an enterprise marked
by guesses and bound for discovery. Other terms
include the serviceable premise, the colorful szart-

‘ing principle, and the dangerous hypothesis, which is

used not only as a postulate (as in the HYPOTHETICO-
DEDUCTIVE METHOD invented by Newton) but also as
an observable proposition to be tested.

Where do assumptions come from? Typically, the
frameworks for analyzing topical domains include a
variety of relations and FUNCTIONS, some of which
may prove to be fruitful assumptions. In general,



