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LOG-MULTIPLICATIVE MODELS
FOR DISCRETE-TIME, DISCRETE-
COVARIATE EVENT-HISTORY
DATA

Yu Xie*

In this paper I develop a new class of discrete-time, discrete-
covariate models for modeling nonproportionality in event-
history data within the log-multiplicative framework. The
models specify nonproportionality in hazards to be a log-
multiplicative product of two components: a nonpropor-
tionality pattern over time and a nonproportionality level per
group. lllustrated with data from the U.S. National Longitudi-
nal Mortality Study (Rogot et al. 1988) and from the 1980
June Current Population Survey (Wu and Tuma 1990), the
log-multiplicative models are shown to be natural generaliza-
tions of proportional hazards models and should be applica-
ble to a wide range of research areas.
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1. EVENT-HISTORY DATA IN TABULAR FORM

When time and covariates are measured discretely, event-history data
can generally be summarized in a tabular form. Tables 1 and 2 are two
such examples. The first example presents mortality differentials by
educational attainment among U.S. males, drawn from the U.S. Na-
tional Longitudinal Mortality Study (Rogot et al. 1988, Table 6). The
upper panel of Table 1 gives the exposure (O), the number of persons
at risk of dying by age and years of schooling; and the lower panel gives
the number of deaths (d) for the same classification. Table 2 illustrates
an example from Wu and Tuma'’s (1990) local hazard analysis of age
patterns of first marriages by educational attainment and race/ethnic-
ity. Asin Table 1, exposures (O) and events (d) are given in two sepa-
rate panels. The data sets are explained in more detail in Appendix A.

TABLE |
Exposure and Deaths by Age and Educational Attainment: U.S. Males

Years of Schooling

Age 0-8 9-11 12 13-15 16+
Exposure (O)
15-24 9096.0 27871.5 20498.5 10308.0 2679.0
25-34 3111.0 6231.0 24775.5 15800.0 16522.0
35-44 4306.5 5875.0 17523.0 7646.5 11627.5
45-54 7174.5 6627.5 14802.5 5453.0 8241.5
55-64 9558.5 6461.0 13103.0 4581.5 5563.0
65-74 8445.5 3645.0 5207.0 1882.5 2365.0
75-84 4788.5 1236.5 1390.0 638.0 803.0
85+ 1113.0 149.5 210.5 104.5 144.0
Deaths (d)
15-24 32 71 41 18 0
25-34 8 36 67 32 16
35-44 43 54 80 35 31
45-54 121 99 185 60 61
55-64 425 274 390 125 120
65-74 629 234 310 125 120
75-84 655 159 144 72 92
85+ 260 43 55 19 30

Note: Data are extracted from the U.S. National Longitudinal Mortality Study
(Rogot et al. 1988, Table 6). For each age X education cell. a death is assumed to
contribute 0.5 person-period of exposure.
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Taking the ratio between a cell in the lower panel (d) and the
corresponding cell in the upper panel (O) in Tables 1 and 2 gives the
observed hazard rate at time ¢ given covariate vector z, denoted here
by h(#|z). For example, the hazard rate of first marriage for white
women at age 18 with 12 years of schooling is observed to be 0.20
(318/1622.35). The hazard rate is interpretable as the “instantaneous
rate” in general and as the “force of mortality” in the mortality
literature (Namboodiri and Suchindran 1987, p. 32). As in the life-
table approach in demography, observed hazard rates can easily be
calculated and reported for discrete-time, discrete-covariate event-
history data. There is, however, an important distinction between
the usual life-table approach and event-history modéls for discrete-
time, discrete-covariate event-history data: Whereas the demogra-
phic literature commonly treats observed data as populations and
observed hazard rates as exact rates, the tabular presentation of
event-history data in the form of Tables 1 and 2 implicitly treats
observed data as samples and observed hazard rates as being inexact.
Thus it is important to preserve original information on exposures
and events and to not reduce them into observed hazard rates, so
that statistical techniques for smoothing sampled data and assessing
sampling errors can be applied later.

One limitation of the tabular presentation of event-history
data and the statistical treatment of such tabular data is the require-
ment that time and covariates be discrete. When time and covariates
are measured in continuous units, they need to be discretized into
intervals, as in life-tables. However, this limitation is offset by the
advantage that observed tabular data can be easily reported in their
entirety and interpreted substantively before any statistical models
are applied. In practice, time and covariates are often measured in
discrete terms. When they are not, social scientists often categorize
them. As argued by Manton et al. (1992), “discrete coding of continu-
ous variables may not lose significant information, may better reflect
the information present, and because the information used in estima-
tion is restricted to what can be reliably reported, may be more
robust” (p. 324).

In this paper, I consider statistical models for event-history data
with discrete time and discrete covariates in the form of Tables 1 and 2.
In general, z is a vector of dummy variables identifying categories of
covariates and their combinations, and ¢ takes on a fixed number of
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intervals (i.e.,#=1,2, . . . T).! In aresearch setting, the researcher is
interested in comparing the hazard function over time and across
different groups or strata. That is, interest centers on how A(|z) varies
as a function of ¢ as well as of z. In order to separate the effects of z
from those of 7, however, further constraints on /(¢|z) are necessary.

1.1 Loglinear Models

Cox (1972) popularized the following specification:
h(tlz) = exp(z'B) hy(1). (1)

where h(t) is the baseline time-dependency function. The model is
called the proportional hazards model because the ratio of hazards
between any two groups, represented here by z, and z,, is a constant,
invariant with respect to t:

h(1lz))/h(1z,) = expl(z, = z))'B]- )

Thus a covariate affects the hazard rate as a multiplier of the baseline
time-dependency function. It either lowers or raises it by the same
amount regardless of r. That is to say, the effects of z do not depend
on ¢, and likewise the effects of r do not depend on z.

When ¢ is truly continuous, there should be no ties—that is,
there should be no two events that occur exactly at the same time. In
this case, estimation of /,(t) is impossible without a parametric as-
sumption, because there are as many unknown parameters for /(t)
as the number of observations in a sample. Cox’s (1972) most signifi-
cant contribution was to show how partial maximum likelihood esti-
mates of the 8 parameters in equation (1) could be obtained without
a parametric assumption about A(t), thus leaving A(r) to be free but
not estimated.

With discrete time and discrete covariates, estimation of equa-
tion (1) is rather simple and dates back at least to Glasser (1967, p.
562). The basic idea is to treat A,(¢) as a set of unknown parameters
to be estimated along with the B’s in equation (2). As Breslow
(1974), Holford (1976, 1980), and Laird and Oliver (1981) later ob-
served, this approach is equivalent to Cox’s (1972) model, but it

ITime intervals may vary in length, depending on the density of observa-
tions within each interval (for example, see Laird and Oliver 1981).
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provides an alternative estimation method for grouped data. In fact,
Holford (1980) and Laird and Oliver (1981) showed that algorithms
for contingency table analysis assuming the Poisson distribution can
be directly adapted to estimate equation (1).

To see this, first let d(f|z) denote the number of events that
occur at time ¢ given z. In expectation,

d(fz) = O(tlz) h(tlz), (3)

where O(1]z) is the “exposure,” or total time at risk of experiencing
the event, at time ¢ conditional on z. Substituting equation (1) into
(3) and taking the natural logarithm on both sides of (3) leads to the
following log-linear model:?

log[d(#|2)] = log[O(t]2)] + log[hy()] + z'B 4)
= log[O(f2)] + A, + 2'B.

In the language of log-linear analysis of contingency tables (e.g., Bish-
op, Fienberg, and Holland 1975; Agresti 1990), d(#|z) is the frequency
variable to be explained, log[O(#|z)] is included as a control variable
with a constrained coefficient of unity,® A, = log[A(¢)] is the main effect
of time, and z'B as a general expression contains the main effects of
covariates and their interactions. For the first example in Table 1, the
model can be written in notation for a two-way contingency table as

log(d,) = log(0,) + A, + a;, )
where A, (t =1, . . . T) is the log-additive effect of time ¢, and o, (i =
1, .. . I) is the log-additive effect of the ith category of educational

attainment, subject to some normalization to ensure that only T + [
— 1 nonredundant parameters are estimated. In this paper, I conve-
niently set a; = 0. It is easy to see that equation (5) implies the same
proportionality constraint as does equation (1):

hh; = (d,/0)(d;10,)

= [exp(A) exp(ay)] / [exp(A,) exp(ay)] (6)
= exp(a; — a;),

There is no so-called “intercept” because T instead of T — 1 dummies
are used for hy(f). As will be made clear, normalization is achieved by placing
constraints on z'f.

3In GLIM, log[O(#|z)] is treated as the “offset.” For its implementation
in other computer programs, see Clogg and Eliason (1988, p. 241).
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where 7 and i’ are any two categories of the covariate variable. Note
that A, and «; should be interpreted differently from comparable
parameters in log-linear models for contingency tables. In equation
(5) the A, and «; parameters represent the effects of time and the
covariate on the logged hazard rate; in log-linear models for contin-
gency tables, the parameters represent the marginal distributions of
the variables. The difference in interpretation occurs because expo-
sure is controlled, making this a model for a rate rather than for a cell
frequency.

For the second example (Table 2), the log-linear model for
proportional hazards can take several forms. For example, we can
specify that the hazard rate of first marriage is affected by education
alone, race alone, both education and race but no interaction be-
tween them, or both education and race and their interactions. Two
specific examples are given as follows:

log(dn‘j) = log(On‘j) ATt ag (7a)
log(d,i/) = log(O,,./») At ot B, (7b)
where A, (1= 1,... 1), (i =1,...),and B, (j = 1,...J)

represent the log-additive effects of age. educational attainment, and
race/ethnicity. As a normalization, I set o, = 8, = 0.

It should be pointed out that the log-linear model for hazard
rates in the form of equations (5) and (7) is sometimes called the
“log-rate model.” Its specification differs from that of the logit model
for discrete-time data (e.g., Allison 1984), although the difference
diminishes as time intervals narrow. For a comparison of the two
alternative specifications, see Yamaguchi (1991). Equation (4) is esti-
mable via maximum likelihood (ML) under the assumption that d
follows an independent Poisson distribution within each covariate-
by-time classification (i.e., within each cell in the lower panels of
Tables 1 and 2). Computer programs for contingency table analysis
can be readily adapted for estimation. Different a priori assumptions
about the B parameters determine different model specifications.
For example, we can assume that a particular covariate affects, or
does not affect, the hazard rate. The log-linear model for hazard
rates of equation (4) implicitly fits the joint distribution of all covari-
ates, analogous to the logit model for binary outcomes (Fienberg
1980, pp. 95-116). The inclusion of the interaction of two covariates
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in the log-rate model means that the effects of one covariate depend
on the other covariate.

2. NONPROPORTIONALITY IN EVENT-HISTORY DATA
2.1 The Issue

In a research setting, proportional hazards models in the parsimoni-
ous form of equation (1) for continuous time or equation (4) for
discrete time are often inadequate, and nonproportional hazards mod-
els are called for. Sometimes the main theoretical interest is to test
whether there are interaction effects between time and covariates. For
example, House et al. (1990) proposed that social inequality in health
declines with age in later years of life due to the increasing dominance
of biological forces over social factors, thus suggesting that socioeco-
nomic differentials in morbidity and functional limitations should con-
verge with age. Relatedly, Manton and his associates (Manton, Poss,
and Wing 1979; Manton, Patrick, and Johnson 1987) have considered
various explanations for the black/white mortality crossover in the
United States. The death rates of blacks are higher than those of
whites in earlier ages and then converge with and fall below those of
whites in advanced ages. Clearly, such theories of convergence and
crossover cannot be tested using proportional hazards models.

One likely source of nonproportionality is population heteroge-
neity in unmeasured characteristics. Vaupel and Yashin (1985) demon-
strate, for example, that mortality crossovers can be attributed to
artifacts of population heterogeneity, since “the frailer members of
the disadvantaged population die off relatively quickly, leaving a sur-
viving population that largely consists of the robust subcohort” (p.
179). 1 do not review the literature on latent heterogeneity here.
Interested readers should consult other sources (e.g., Heckman and
Singer 1982; Vaupel and Yashin 1985; Mare 1992) for methods aimed
at modeling unobserved heterogeneity. Instead, the objective of this
paper is to model observed patterns of nonproportionality with ob-
served variables. Cautions should always be exercised in interpreting
nonproportionality parameters as to whether they reveal true non-
proportionality or merely reflect selectivity biases due to population
heterogeneity.

As an illustration, Figure 1 presents observed hazard rates (in
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FIGURE 1. Hazard rate of death among U.S. males by age and educational attainment.
Source: U.S. National Longitudinal Mortality Study (Rogot et al. 1988).

the natural logarithmic scale) from the first example (Table 1). It is
evident that the curves for the five educational groups are not paral-
lel, which means that the hazard rates are not proportional. The
educational differentials in mortality reach a maximum in the second
age interval (24-35) and gradually decline with age. Proportional
hazards models are inappropriate for the problem, as they would
necessarily force the five lines to differ by a constant.* Even though
in this case a proportional hazards model would give the correct rank
order of the educational groups in terms of social inequality in the
average hazard of death, such a model necessarily prevents the re-
searcher from testing the theoretically interesting hypothesis that
(observed) social inequality in mortality diminishes with age.

In many other situations, model misspecification due to non-
proportionality may lead to incorrect conclusions. Based on the data
shown in Table 2, the curves in Figures 2(a) and 2(b) also violate
proportionality. That is, the differentials in the hazard rate of first

4This is so because Figure 1 plots the logarithm of the hazard rate on the
vertical axis.
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FIGURE 2(a). Hazard rate of first marriage by age and educational attainment. Source:
1980 June Current Population Survey (Wu and Tuma 1990).

marriage by educational attainment and race/ethnicity are so age-
dependent that any discussions of group differences should be quali-
fied by age. Commenting on the differences between Cox’s model
and their local hazard models, Wu and Tuma (1990) concluded that
“[t]hese results suggest a different behavioral process than the results
of the Cox model” (p. 172).

2.2 Prior Approaches

There exist numerous approaches to handling nonproportionality—
i.e., interaction between time and covariates in event-history analy-
sis. For Cox’s model, one standard recommendation (e.g., Lawless
1982, p. 365; Allison 1984, p. 39) is to stratify on covariates for which
proportionality does not hold. Stratification means that the re-
searcher specifies multiple baseline hazards functions, one for each
stratum, within which proportionality holds true with respect to
other covariates. That is, hy(f) of equation (1) is changed to h(?),
where the second subscript s refers to the sth stratum. In partial



312 YU XIE

Log of Hazard Rate

—White
-1 ---Black
—-Mexican

-6 | I |
10 20 30 40 50

Age

FIGURE 2(b). Hazard rate of first marriage by age and race/ethnicity. Source: 1980 June
Current Population Survey (Wu and Tuma 1990).

maximum likelihood estimation with continuous measures of time,
the stratum-specific £ (f) function is specified but not estimated.

Nonproportionality can also be modeled more explicitly in the
exp(z'B) part of equation (1). This is achieved by including the inter-
action between a time-varying covariate and other covariates (e.g.,
Allison 1984, p. 38). The simplest example is to add the product of ¢
and a covariate variable, testing whether the effect of the covariate
departs from proportionality as a linear function of time. This solu-
tion presumes that the nonproportionality structure is known a pri-
ori, and that empirical measurgs for the structure are available. In
practice, however, these two conditions are not always met. For
example, we know that mortality differentials by educational attain-
ment depend on differences in work and living conditions, lifestyles,
knowledge, access to medical care, and a host of other factors. How-
ever, it is very difficult to measure all these factors over the whole life
span and disentangle their independent and joint contributions.

For discrete-time, discrete-covariate event-history data, strati-
fication is tantamount to the full interaction between ¢ and covari-
ates. That is, different hazards curves can be flexibly specified and
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empirically estimated (e.g., Laird and Oliver 1981), if we change the
log-linear model of equation (4) into

log[d(1|2)] = log[O(tlz)] + A,, + 2B, (8)

subject to the requirement that A, and z'8 are normalized. However,
the unstructured modeling strategy of equation (8) is likely to lead to
the loss of information and imprecision of estimation due to over-
parameterization. For example, when all covariates (including their
interactions) are nonproportional, equation (8) is equivalent to re-
writing observed hazards in the saturated model. As a result, we lose
the usual advantages of fitting a statistical model to sampled data.’

However, parameters from an over-parameterized model can
be further analyzed. For example, Yamaguchi (1993) proposed to
model nonproportional effects using parameters estimated from the
saturated model. In essence, Yamaguchi’s method consists of two
steps. In the first step, parameters for the saturated model are esti-
mated via ML along with their variance-covariance matrix. In the
second step, these parameter estimates and their variance-covariance
matrix are then used in testing more constrained models. Starting with
a very general and conservative model (i.e., the saturated model),
Yamaguchi’s method should appeal to researchers who are either at
the stage of exploratory data analysis or find other models too restric-
tive. In contrast, the log-multiplicative approach introduced in this
paper specifies and tests a family of restricted models in a single step.

Nonproportionality can also be easily handled in such paramet-
ric models as the commonly used exponential, Gompertz, and
Weibull models. This is typically done by including the interaction
between time-dependency parameters and covariates so that indi-
viduals of different covariates follow different time-dependency para-
metric functions (albeit within the same family). One problem with
this approach, however, is that interactions between covariates and
time-dependency parameters are usually specified globally—i.e., for
the entire range of time. A better approach is to allow for such
interactions within local intervals, resulting in piecewise parametric
models (e.g., Wu 1991) and local parametric hazard models (Wu and
Tuma 1990).

SNamely: (1) smoothing scattered observed data, (2) reducing large
amounts of observed data, and (3) testing theoretically interesting hypotheses.
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Wu and Tuma’s paper on local hazard models is worth special
mention, for it represents a serious attempt to model the kind of
nonproportionality shown in Figures 2(a) and 2(b) within a flexible
framework. In essence, a local hazard model is a hybrid between
nonparametric and parametric models—globally nonparametric be-
cause it breaks down the entire regression curve into separate pieces
and locally parametric because it assumes a parametric form (i.e.,
exponential or Gompertz) in a small neighborhood. In fact, we may
view the local hazard approach as stratification, with a parametric
hazard function being stratified across time.

3. LOG-MULTIPLICATIVE MODELS FOR
EVENT-HISTORY DATA

In this paper, I present a class of models that generalize proportional
hazards models by permitting nonproportional effects, while avoid-
ing some of the drawbacks of stratified, interactive, or local hazard
models. The solution is flexible in form and applicable to a variety of
situations when the proportionality assumption does not hold. As
will be shown later, it is a restricted form of the stratified model and
reducible to the proportional hazards model when proportionality
holds true.

3.1 Log-Multiplicative Specification

The interaction model as expressed by equation (8) generally puts no
constraints on the interaction effects between time and covariates, as
A,, is allowed to vary freely. Though the model has the advantage of
describing nonproportionality at its fullest, it suffers from certain
problems. First, the model lacks structure, and its estimated patterns
of nonproportionality are the same as the observed patterns. Second,
the model is not parsimonious, as the number of parameters for
nonproportionality is the product of the number of covariate catego-
ries (I or J) involved in nonproportionality and the number of time
categories (7). Third, the resulting parameters describing the interac-
tion between time and the covariates are difficult to interpret, not
only because there are too many of them but also because they do
not follow any prescribed regularity.

I propose to remedy the above shortcomings by borrowing a
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structural constraint first introduced by Goodman (1979) and later
named “log-multiplicative” by Clogg (1982b). The common use of
the log-multiplicative specification is to model two-way associations
in two-way contingency tables (e.g., Goodman 1979) or variations in
two-way log-multiplicative associations across other dimensions in
multiway tatles (Clogg 1982a; Becker 1989; Becker and Clogg 1989).
More recently, Goodman (1986, pp. 262-66) proposed to model
cross-layer variations in unspecified two-way associations of primary
interest in a multiplicative specification for three-way tables. This
proposal has been implemented by Xie (1991) and Xie and Pimentel
(1992) to study the age patterns of marital fertility rates across differ-
ent populations and by Xie (1992) to compare social mobility across
nations. Here, I extend the log-multiplicative approach to model
discrete-time, discrete-covariate event-history data.

For the first example in Table 1, the log-multiplicative model is

log(d,) =log(0,) + A, + a; + 7, &. (9)
7’s (t = 1, ... T) are parameters representing the time pattern of
nonproportionality, and &’s (i = 1, . . . [) are parameters represent-

ing the nonproportionality levels for different educational groups.
For the second example in Table 2, the model can take several forms,
three of which are:

log(drij) = log(Otij) TAt ot Bt T (10a)
log(d,;) =10g(Oy) + A+ o; + B+ 7,(§ + ¢p);  (10b)
log(dn»j) =1log(0,;) + A, + o + Bi+7&+ @y (10¢)

tij

As in equation (9), the 7/sand @,s (t = 1, . . . T) represent the time
pattern of nonproportionality, and &’s (i = 1, ... I) and /s (j =
1, . . .J)respectively represent the nonproportionality levels for edu-

cational attainment and race/ethnicity. In the special case when the
log-multiplicative term (or terms) disappears, the log-multiplicative
model of equations (9) and (10) reduces to the proportional hazards
model of equations (5) and (7b). Since the log-multiplicative terms in
equation (10) are all special cases of A,, in equation (8), the log-
multiplicative model is more restricted than the stratified model,
which allows the full interaction between time and covariates.

To illustrate the implications of the log-multiplicative model,
let us further explore an example using equation (10b). It follows that
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hrij = drij/oti/‘ = exp(A,) exp(a;) exp(Bj) exp[7, (& + 'l’/)]; or
log(htij) =Atot Bt (& + ‘/f,')-

At the ith level of the first covariate (educational attainment), we
have the following hazards model as a function of time and the
second covariate (race/ethnicity):

log(h,j|i) =\ +T1é) taot B+ 7. . (11)

If 7, ¢; is absent, as in equation (10a), equation (11) is essentially a
proportional hazards model conditional on the first covariate in the
form of equation (7b), with the time-dependency function depending
on the first covariate (A, + 7, §;). When 7, § and 7, ; are both present,
equation (11) means that the time pattern of hazards is nonpro-
portional with respect to either covariate.

[tisimportant that ¢, be interpreted along with §;, B8, with ;, and
A, with 7,, for there can be no true proportional effects in the presence
of nonproportionality. In accordance with earlier terminology for the
log-linear model, however, I continue to refer to A,, «;, and ; as “log-
additive” effects—i.e., additive effects on logged hazards if nonpro-
portionality were held constant. As will be shown later, A,, ;, and B;
are indeterminate until 7,, &, and ¢; are normalized.

3.2 Normalization and Estimation

For the first example in Table 1, the contingency table under consider-
ation is three-way: time by covariate (education) by data type (events
versus exposure). The last dimension is used to construct the observed
hazard rate (events per unit exposure) and is embedded into log-
linear/log-multiplicative models discussed in this paper through equa-
tion (4). Similarly, the second example with two covariates involves a
four-way table. As mentioned earlier, A,, «;, and B, represent the ef-
fects of time and covariates. Likewise, 7, (§ + ¢;) of equation (10b)
represents the interaction effects of time and the covariates—i.e., of
nonproportionality.

As latent scores, 7,, §;, and ¢; in equation (10b) are indetermi-
nate without normalization (see Xie 1991). Four normalization con-
straints are necessary, as the locations of 7, &, and ; are indistinguish-
able from the scales of A,, @;, B;, and the scale of 7, is indistinguishable
from that of (§; + ;). Whether to normalize by weighting the scores
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with marginal probabilities or to use unweighted normalization has
been a matter of dispute in recent years (e.g., Becker and Clogg
1989; Goodman 1991; Clogg and Rao 1991). The unweighted solu-
tion is usually preferred, especially in a comparative context, be-
cause unweighted scores are invariant to changes in marginal distribu-
tions.® Thus I normalize the locations of 7, §;, and ¥;, and then the
scale of 7,, without resorting to weights, imposing the constraints = 7,
=3&=3y,=0,and = 7 = 1. Hence, of the T + I + J parameters in
7,(& + ¢,), only T + [ +J — 4 are nonredundant. As compared to the
model of equation (10b), T — 2 additional parameters are needed to
identify @,’s for the model of equation (10c).

When only one covariate is included in the log-multiplicative
specification, as in equations (9) and (10a), three normalization con-
straints are required. For consistency, IsetS 7, =3¢ =0,and 2 7 =
1. If the only covariate involved in the log-multiplicative specifica-
tion is dichotomous, the log-multiplicative model is equivalent to the
interaction model. That is, there is no information reduction, or
structural constraint, in equations (9) and (10a), if / = 2. The same is
true if T = 2, although this latter situation is unlikely to occur be-
cause time is usually coded in many intervals in order to preserve
information.

Because a log-multiplicative term involves the product of two
unknown parameters [e.g., 7, (§ + ;) in equation (10b)], estimation
of log-multiplicative models is more complicated than the usual
loglinear models. Yet, the complication is revolvable with a proper
modification of any standard computer package with a procedure for
ML estimation of log-linear models. I here briefly describe an itera-
tive procedure that I used to estimate the models reported in this
paper.” The first step is to give starting values to log-multiplicative
effects (i.e., 7, §, and ¢;). The second step is to estimate the log-
multiplicative effects of the covariates (&’s and ¢/s) via ML while
temporarily treating the starting values for 7,’s as known. With ¢&’s
and ¢;’s thus updated and temporarily treated as known, the next

6The same invariance property is obtained if the same set of weights is
applied to all populations being considered. Since I do not have standard
weights a priori, 1 choose to use uniform weights (i.e.. not to weight).

7All empirical results reported in this paper were estimated using GLIM
macros, which are available from the author upon request. I would like to thank
Mark Becker for providing some useful GLIM macros, from which my macros
were developed.
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FIGURE 3(a). A stylized example of convergent curves described by a log-multiplicative
model.

step is to estimate and update 7,’s. This process continues until all
estimated parameters stabilize.

3.3 Interpretation

Using the case of equation (9) as an example, we further explore
the interpretation of the model parameters. The 7, parameters can
be interpreted as representing the typical pattern of deviation from
proportionality;® and & can be interpreted as representing the levels
of deviation from proportionality. The log-multiplicative model spe-
cification is parsimonious because the number of parameters re-
quired to model nonproportionality is in the order of (T + [ — 3),
instead of (T — 1)({ — 1) as in the interaction model. For our
example in Table 1, the log-multiplicative model uses 10 degrees of
freedom for interactions between time and the covariate, whereas
the full interactive model uses 28 degrees of freedom. Nonetheless,
the log-multiplicative model is flexible, capable of capturing various
kinds of deviations from proportionality, such as convergence and
crossover of different curves. Three different numerical realizations
of equation (9) are given as stylized examples in Figures 3(a)

81 use the term “pattern™ to describe the interaction effects between the
hazard rate and time. Similar uses of the term “pattern™ are found in the mobil-
ity literature (e.g.. Featherman, Jones, and Hauser 1975: Xie 1992) and the
demographic literature (e.g.. Coale 1971: Xie and Pimentel 1992).
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Log of Hazard Rate

Time

FIGURE 3(b). A stylized example of cross-over curves described by a log-multiplicative
model.

Log of Hazard Rate

Time

FIGURE 3(c). A stylized example of seemingly irregular curves described by a log-
multiplicative model.

through 3(c). A more detailed account of the three examples is
given in Appendix B.

The log-multiplicative specification is flexible because the
deviation pattern parameters (7,’s) as well as the baseline time-
dependency parameters (A,’s) are not specified a priori. What is speci-
fied is the structure for nonproportionality in a log-multiplicative
form. What is common among Figures 3(a) through 3(c) is the con-
straint that the distance between any two lines follows the same pat-
tern along the time dimension but is raised or lowered by a multiplier
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for different contrasts. This can be seen more clearly if we take the
ratio of hazards between two groups (say, i and ') at time

hilhy ;= expla; = ;) explr(& — &), (12)

a quantity that varies with ¢ only because of 7,. The 7, parameters thus
determine the nonproportionality pattern in the sense that a large
absolute value of (normalized) 7, indicates a high level of departure
from proportionality along the time dimension, and vice versa. Note
that 7,’s do not vary with covariates. This means that the basic pattern
(or shape) of nonproportionality is the same, but the level of
nonproportionality varies across different groups, as shown in equa-
tion (12). An analogy with usual log-multiplicative models can be
readily made if we turn equation (12) from the relative risk into the
log-odds-ratio for any pair of time periods (7 and ') and two catego-
ries of the covariate (i and i'):

log(hy hyilhy iy ) = (1, = 7)) (& = &) (13)

That is, the relative likelihood for transition is determined by the
product of the distance between the temporal pattern scores and the
distance between the levels of the covariate.

For the log-multiplicative model to be successful, the re-
searcher needs to assume that the pattern of deviation from propor-
tionality is the same for all categories of all the covariates involved in
a specification. In many research settings, this assumption may be
very sensible. In others, it may not be so sensible, but at least it is
always testable. Hence, researchers arc urged to consider the log-
multiplicative specification before adopting a fully interactive model
when proportionality fails to hold. Let me now discuss different cases
in turn.

Case 1: One covariate present (equation 9). Very often, the
covariate explaining differences in the hazard rate is an ordinal vari-
able with respect to its effects on the outcome variable (hazard rate).
In the first example, this is explicit. However, this can be implicit
when variables such as social origin, cohort, or region are used as the
covariate. The order of the categories of the covariate is inconsequen-
tial, as the estimation of equation (9) reveals the correct order. For
the sake of demonstration, let us assume that the categories are
correctly ordered 1, 2, ... I. It is reasonable to assume that the
same mechanism that differentiates categories 1 and 2 is likely to
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differentiate categories 2 and 3, etc., so that the same time-specific
pattern of deviation from proportionality is shared by all categories.
For instance, in the first example (Table 1) we may assume that the
differentials between those with 0-8 years of schooling and those
with 9-11 years of schooling follow the same pattern, albeit with a
different level, as the differentials between those with 1315 years of
schooling and those with 16+ years of schooling. This reasoning is
consistent with the hypothesis that over time biological factors in-
crease their importance relative to social factors. As mortality differ-
entials by education converge with age (Figure 1), the advantages or
disadvantages of social groups diminish, regardless of their relative
positions in the social hierarchy. This hypothesis predicts that the
pattern parameters (7,) monotonically decreases over time.

Case 2: Two covariates present, one covariate involved in the
log-multiplicative specification (equation 10a). The interpretation is
the same as in Case 1, as long as the second covariate has only log-
additive effects. Case 2 is a hybrid between the log-multiplicative
model (with respect to the first covariate) and the log-linear model
(with respect to the second covariate). A variation of this, combining
the interaction model and the log-multiplicative model, occurs when
the first covariate is included in the log-multiplicative specification,
and analysis is stratified such that the second covariate has an unre-
stricted interaction with time. Interpretation of this hybrid model is
similar to that of equation (10a) in that the two covariates are distinct.

Case 3: Two covariates present, and both used in a single log-
multiplicative term (equation 10b). In this case, the two covariates
can be thought of as sharing a common time-specific pattern of devia-
tion from proportionality. In the second example (Table 2), for in-
stance, both educational attainment and race/ethnicity may cause
nonproportionality in similar patterns by age. Formally, the con-
straint is 7, (§ + ;) of equation (10b). Affecting the hazard rate
nonproportionally through a common vector of pattern parameters
(7/s), & and ¢; parameter estimates enable the researcher to compare
relative degrees of nonproportionality of the two covariates.

Case 4: Two covariates present, and involved in two separate
log-multiplicative terms (equation 10c). The key feature of this
model is to partition the log-multiplicative term into two dimensions.
Multidimensional log-multiplicative models have received extensive
treatments in various contexts (Goodman 1986; Becker 1989; Becker
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and Clogg 1989; Xie 1992). Interpretation of this case is similar to
Case 3. The main difference is that in Case 4 two sets of time-
dependent deviation parameters (7, and @,) are separately normal-
ized and estimated, as the two covariates no longer share the same
pattern of deviation from nonproportionality.

Case 5: With two covariates, three-way interactions present
involving the two covariates and time. There could be many different
specifications for two-way and three-way interactions. A special log-
multiplicative specification for three-way interactions takes the form
7, & ;. In this case, the researcher conditions the log-multiplicative
specification of one covariate’s nonproportionality on another covari-
ate (see Goodman 1986, p. 263; Xie 1992, p. 386). This model is
more difficult to interpret and thus less desirable than those in Cases
2 through 4 involving only two-way interactions.

Case 6: More than two covariates present. Even though I do
not consider this case in the present paper, the models discussed in
Cases 1 through 5 are readily generalizable to situations when there
are more than two covariates. Interpretations of such models remain
the same.

As is true with any model-based approach to analyzing em-
pirical data, the different specifications of log-linear and log-
multiplicative models should be initiated from a theoretical point of
view and tested against observed data. For this purpose, I recom-
mend the use of such standard tools as the log-likelihood ratio chi-
squared statistic, the Pearson chi-squared statistic, and the BIC
statistic.

4. EMPIRICAL EXAMPLES

The first three rows of Table 3 present three log-linear models for
hazard rates applied to the first example. The goodness-of-fit of the
models is assessed first by the log-likelihood ratio chi-squared statis-
tic (L?) and the Pearson chi-squared statistic (X?) along with their
degrees of freedom (DF). However, it is well known that, with large
samples, the log-likelihood ratio chi-squared test and the Pearson
chi-squared test are likely to reject a good model. For this reason, I
also use Schwarz’s (1978) Bayesian criterion (BIC) as adapted by
Raftery (1986) for contingency table settings:
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TABLE 3
Goodness-of-Fit Statistics of Log-linear and Log-Multiplicative Models
Applied to Data in Table 1

Model Description L? X> DF A BIC
E  Constant 9778.90 16387.11 39 55.71% 9443.94
T  Age 265.56 26520 32 8.07 -9.28
A Age + Edu 94.19 9455 28 429  —146.29

X Age + Edu + Age X Edu 27.71 24.57 18 2.03 —126.89
X* Age + Edu + Age* X Edu*  34.99 31.07 22 212  —153.97

Note: L? is the log-likelihood ratio chi-squared statistic, and X? is the Pearson chi-
squared statistic, both with the degrees of freedom reported in column DF. A is the Index
of Dissimilarity. BIC = L* — (DF) log(D), where D is the total number of deaths (5,371).
Edu is an abbreviation for educational attainment. Age* is a constrained function of age,
and Edu* is a constrained function of education (see Table 4 and text). The multiplicative
sign (X) denotes log-multiplicative specification. Two cells of zero exposure are blocked
out from all the models.

BIC = L? — (DF) logD. (14)

where D is the total number of events. The rule is to select the model
with the lowest BIC value. When BIC is negative, the null hypothesis
is preferred relative to the saturated model, whose L? and BIC are by
definition zero. The saturated model in this framework means full
stratification for all possible combinations of covariates. As a purely
descriptive measure, I also use the Index of Dissimilarity (Shryock
and Siegel 1976, p. 131), denoted as A. The Index of Dissimilarity
here can be interpreted as the proportion of events that would have
to be reclassified in order for the statistical model to achieve perfect
prediction of the observed events.

As a point of reference, the first model in Table 3 is the
exponential (E) model, which naively assumes that the hazard does
not vary either by time or by education. Clearly, the model does not
fit the data. The second model is the time-dependency (7) model.
With seven additional parameters for age, model T greatly improves
the fit. The third model is of the form described by equation (5) with
one covariate, and it is referred to as the “log-additive (A) model”
because its parameters have log-additive effects on hazards. From
Table 3, it is easy to observe that model A fits the data better than
does model T: L? is reduced by 171.37 to 94.19 using only four
degrees of freedom; A and BIC also decline respectively from 8.07
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TABLE 4
Estimated Parameters of Models in Table 3
Variables Model T Model A Model X Model X*
Log-Additive Effects of Age (A,)
15-24 —6.075 -5.930 -5.936 —5.867
25-34 —6.035 —5.729 —5.594 —5.545
35-44 -5.264 —4.985 —4.894 —4.862
45-54 —4.387 —4.156 —4.067 —4.037
55-64 -3.382 —3.188 -3.113 —3.082
65-74 -2.721 —2.578 —2.437 -2.399
75-84 —2.066 -1.961 —1.795 —-1.770
85+ —1.442 —1.354 —1.160 —-1.122
Log-Additive Effects of Edu («;. excluded = 0-8)
9-11 —0.025 —0.062 -0.072
12 —-0.274 —0.383 -0.419
13-15 -0.314 —0.444 -0.536
16+ —0.567 —0.782 -0.795
Log-Multiplicative Effects of Age or Age* (7,)
15-24 0.220 0.103
25-34 0.580 0.549
35-44 0.392 0.413
45-54 —0.019
55-64 ~0.007 ‘ 0036
65-74 —0.328
75-84 ~0.381 } ~0-446
85+ —0.457 -0.562
Log-Multiplicative Effects of Edu or Edu* (&)
0-8 0.528
9-11 0.593 } 0.501
12 0.000 -0.014
13-15 —-0.242
16+ -0.881 } 0487

Note: Edu (abbreviation for educational attainment) is measured in years of
schooling completed. Log-multiplicative effects of age are normalized with a mean of zero
and a sum of squares equal to one, and those of Edu are normalized with a mean of zero.

percent and —9.28 to 4.29 percent and —146.29. In other words, the
comparison of models A and T reveals that there are significant

differences in hazards across the five educational groups.

Parameter estimates for models 7 and A are displayed in the
first two columns in Table 4. The log-additive effects of educational
attainment are normalized as contrasts to the excluded category of
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0-8 years of schooling. As expected, both models T and A show that
the logged hazard of death (i.e., force of mortality) increases with
age. The log-additive effects of education in Model A agree with the
expectation from the stratification literature that more education is
associated with a lower likelihood of death. The differentials occur
most drastically at two points: (1) with or without a high school
education (12 years of schooling), and (2) with or without a college
education (16 years of schooling). For example, compared to those
with 0-8 years of schooling, a high school education reduces the
hazard of death by about 24 percent; compared to those with just a
high school education, a college education further reduces the hazard
of death by 25 percent.?

The last two rows of Table 3 report goodness-of-fit statistics
for two log-multiplicative models. The difference between models X
and X* is that X* is a restricted version of X with certain equality
constraints imposed on the log-multiplicative effects of age and edu-
cation. The log-multiplicative model X and the loglinear model A are
nested, and according to the difference in the L7 statistic, model X is
better than model A (a chi-squared reduction of 66.48 for 10 degrees
or freedom). The Index of Dissimilarity drops significantly from 4.29
percent to 2.03 percent. By the BIC criterion, however, model X is
not as good as model A, due to the fact that model X uses up too
many degrees of freedom. The problem of over-parameterization in
model X is solved by constraining some of the log-multiplicative
effects in model X*. (The constraints were derived after inspection
of parameter estimates for model X.) As shown in Table 4, T con-
strain the log-multiplicative effects of age to be equal for age catego-
ries 45-54 and 56-64 and for age categories 65-74 and 75-84, and
the log-multiplicative effects of education to be equal before 12 years
of schooling and after 12 years of schooling. The constraints saved 4
degrees of freedom, making model X* (L = 34.99 with 22 degrees of
freedom, BIC = —153.97) preferable to model X.

The estimated parameters of models X and X* are displayed

Note the following formulas: 1 — exp(—0.274) = 24 percent; 1 —
exp(—0.567 + 0.274) = 25 percent. The total benefit of having a college educa-
tion through high schoolis 1 — (1 — 24 percent)(1 — 25 percent) = 0.43, which is
the same as what is calculated directly from the effect of a college education
compared to 0-8 years of schooling: 1 — exp(—0.567).
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in Table 4. Given the currently implemented normalization £ 7, = X
& = 0and = 77 = 1, the log-additive effects can be interpreted as
“unweighted” mean effects on the log of the hazard. Hence, the
parameter estimates of models X and X* are consistent with those of
model A, indicating that on average the hazard rate of death mono-
tonically increases with age and declines with educational attain-
ment. The normalized log-multiplicative effect of age in model X
first rises from 0.220 for age 15-24 to 0.580 for age 25-34 and then
drops continuously with the slight aberration for age 55-64. The
exception for age 55-64 can be attributed to sampling error, as it is
smoothed in model X*. Also after smoothing in model X*, the nor-
malized log-multiplicative effects of education decrease monotoni-
cally. The two sets of log-multiplicative effects should be interpreted
jointly. For example, multiplying the positive effect of 0-11 years of
schooling by the generally decreasing trend of age effects means that
the age pattern of nonproportionality favors those with higher educa-
tional attainment at early ages (with lower relative risks of death)
and penalizes them at later ages (with higher relative risks of death).
To compare the educational groups on an absolute scale, however, it
is necessary to add the log-additive effects of education. In other
words, it cannot be directly inferred from the log-multiplicative ef-
fects how hazard rates for groups differ in the time range actually
observed. Rather, the log-multiplicative effects can tell us only how
the group differences vary over time—i.e., the interaction between
time and the covariates. For the first example, the estimated ¢ pa-
rameters indicate that mortality differentials by educational attain-
ment decrease with age. Figure 4 presents the hazard rates predicted
from these parameter estimates for the educational groups. It is no
surprise that the five curves in Figure 4 closely match those in Figure
1, but the curves in Figure 4 are smoother.

While the first example has only one covariate (educational
attainment), the second example has twd covariates (educational
attainment and race/ethnicity). Table 5 reports the goodness-of-fit
statistics for models that were fitted to the data displayed in Table 2.
As before, models E, T, and A denote the exponential model, the
time-dependency model, and the log-additive model, respectively.
Models A, and A, were previously written respectively in equations
(7a) and (7b). In model /,, the full interaction between age and
education is fitted; and model 1, adds the full interaction between age
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FIGURE 4 Predicted hazard rate of death among U.S. males by age and educational
attainment.

and race/ethnicity.!? In estimating the models via ML, I blocked out
two cells with zero observed exposure by including two dummy vari-
ables for them in all statistical models. The effect is to ignore the cells
for which data are missing while leaving other cells intact (see Good-
man 1968).

The goodness-of-fit statistics reported in the first four lines in
Table 5 confirm the expected importance of age, education, and race/
ethnicity in explaining the hazard of first marriage, as the goodness-
of-fit improves steadily from model E to model A,. However, model
A, still does not fit the observed data well. The lack of fit is mostly
due to nonproportionality in the effects of the covariates, as the
introduction of the interactions between age and the covariates in
models /; and [, greatly improves the goodness-of-fit. From model
A, to I, for example, L? is reduced by 1092.58 to 219.88 using 42
degrees of freedom. A and BIC are also drastically reduced from
15.02 percent and 114.92 to 5.76 percent and —828.07, respectively.
The addition of the interaction between age and race/ethnicity in

10The interaction model was not listed for the first example because it is a
saturated model—exhausting all degrees of freedom and reproducing the ob-
served data exactly.
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model 7, results in similar but less impressive gains in goodness-of-fit:
Model ], is better than model /; by the chi-squared test (a difference
of 121.87 in L? for 28 degrees of freedom), but model /, is better than
model /, according to the BIC criterion. This seems to suggest that
the effects of race/ethnicity are proportional after the nonpropor-
tionality in the effect of education is taken into account. Before
rushing to such a conclusion, we should realize that many degrees of
freedom (30 for model /; and 58 for model /,) are used in describing
nonproportionality. A more sensitive test of nonproportionality with
fewer degrees of freedom may yield different results, as will be
shown with log-multiplicative models.

Estimated parameters of models T and A, are displayed in the
first two columns of Table 6. The parameters representing age show
the same pattern as in Figure 2(a) and 2(b): The hazard of first
marriage rises rapidly from ages less than 15 to the early 20s and then
gradually declines. The log-additive effects of education indicate that
the hazard of first marriage is on average inversely affected by educa-
tional attainment. Likewise, the log-additive effects of race/ethnicity
can be interpreted to mean that overall white women have higher
hazards of first marriage than women of Mexican origin, who in turn
have higher hazards of first marriage than black women. These re-
sults are consistent with those from Wu and Tuma’s (1990, Table 2)
application of Cox’s continuous-time proportional hazards model.

Three log-multiplicative models are listed in the last three
rows of Table 5, as X, (equation 10a), X, (equation 10b), and Y,
(equation 10c).! Model X| is an intermediate model between A, and
I}, and model X, between A, and /,. The advantages of the log-
multiplicative model specification emerge most clearly when com-
pared to the log-linear model on the one hand and the interaction
model on the other. Let us first stay with the reduction in L? as the
criterion for assessing relative goodness-of-fit of a model. Relative to
model A, (L = 1312.46 with 158 degrees of freedom), X, reduces L>
to 327.54 with 142 degrees of freedom. This compares to model /,’s
reduction in L? to 219.88 with 116 degrees of freedom. That is, for
merely 16 degrees of freedom (from A, to X)), model X, explains

Further simplified models (models X7, X5, and Y7) with constrained
functions of age were fitted and are found to be slightly better. The results of
models X}, X7, and Y7 are not reported here but are available from the author
upon request.
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TABLE 6
Estimated Parameters of Selected Models in Table 5
Variables Model T Model A, Model X, Model Y,
Log-Additive Effects of Age (A,)
<15 —4.526 —4.189 —5.685 -5.599
15 -3.709 —3.367 —4.518 —4.532
16 =3.050 —2.700 —3.353 —3.411
17 -2.605 —2.244 —2.567 -2.674
18 —2.092 -1.717 -1.697 —1.843
19 -1.997 —1.606 —1.455 -1.592
20 —1.860 —1.456 —1.243 -1.347
21 —1.809 -1.397 -1.127 -1.239
22 —1.835 -1.418 —1.110 -1.228
23 -1.867 —1.448 —1.124 -1.234
24-25 -2.059 —1.641 -1.303 —1.417
26-27 —2.249 -1.834 —1.465 —1.568
28-30 —2.444 -2.042 —1.641 -1.731
31-39 -3.147 -2.763 —2.454 —2.539
>40 -3.165 —2.796 -2.752 —2.744
Log-Additive Effects of Edu («;, excluded = 0-11)
12 —0.141 -0.174 —0.147
13-15 —0.387 —0.581 -0.529
16+ —0.651 -1.423 -1.327
Multiplicative Effects of Race (8,, excluded = White)
Black -0.423 -0.378 -0.277
Mexican —0.083 —0.060 0.015
Log-Multiplicative Effects of Age (7,) (For Edu)  (For Race)
<15 0.573 0.537 0.625
15 0.474 0.479 0.362
16 0.313 0.328 0.177
17 0.194 0.222 -0.010
18 0.030 0.065 -0.194
19 —0.054 -0.028 -0.234
20 —0.104 —0.096 —0.135
21 —0.164 —0.158 —0.198
22 -0.222 -0.215 —0.247
23 -0.227 -0.226 -0.202
24-25 —0.215 —0.209 -0.213
26-27 -0.227 -0.233 -0.117
28-30 —0.230 —0.255 0.039
31-39 —0.137 -0.147 -0.020
>40 —-0.002 —0.064 0.367

(continued on next page)
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TABLE 6 (continued)

Variables Model T Model A, Model X, Model Y,
Log-Multiplicative Effects of Edu (&)
0-11 3.447 3.298

12 1.128 1.087

13-15 —0.647 —0.646

16+ —3.928 —3.739
Log-Multiplicative Effects of Race (¢;)
White —-0.417 —0.736
Black 0.517 0.595
Mexican —0.100 0.142

Note: Edu (abbreviation for educational attainment) is measured in years of
schooling completed. Log-multiplicative effects of age are normalized with a mean of zero
and sum of squares equal to one, and those of covariates are normalized with a mean of
zero.

about 90 percent of the nonproportionality explained by the I,
model, which uses 42 degrees of freedom. Similarly, for merely 19
degrees of freedom, model X, explains about 86 percent of the non-
proportionality explained by the I, model, which uses 70 degrees of
freedom. In addition, model X, fits the data well in absolute terms of
all available criteria. The comparison of models X; and X, reveals
that X, is a better model by either the L* or the BIC criterion.
Moving from X, to X, reduces L* by 63.34 for two degrees of free-
dom, which is highly significant; BIC for X, is more negative than
that of X,. This result confirms the nonproportional effects of race/
ethnicity earlier observed by Wu and Tuma (1990). If I had relied on
interaction models to detect nonproportionality, I might have con-
cluded that race/ethnicity has only proportional effects, for , is bet-
ter than /; according to the BIC criterion.

Model Y, relaxes the assumption that the two covariates do
not share the same age pattern of deviation from nonproportionality.
Model X, can be seen as a restricted version of model Y,, which uses
13 (15 minus 2 for normalization) additional degrees of freedom.
However, the null assumption of a common deviation pattern cannot
be rejected, as model Y, does not improve the goodness-of-fit over
model X,. Thus model X, is preferred over model Y,.

The parameter estimates of models X, and Y, are given in
Table 6. The interpretation of them is similar to those of models X
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and X* in Table 4, except that the effects of education and race/
ethnicity should now be interpreted in a multivariate context, that is,
net effects after the statistical control of the other covariate. It is
evident that the two sets (one for education and the other for race/
ethnicity) of log-multiplicative effects of age in model Y, are esti-
mated to be similar. This explains why the restriction imposing a
common age deviation pattern in model X, does not result in much
deterioration of the fit. Whether this result can be duplicated in
other research situations with other covariates is an empirical ques-
tion subject to empirical investigation. However, the restricted ver-
sion of the log-multiplicative model (equation 10b) is preferred to
the unrestricted version of the log-multiplicative model (equation
10c), because the former is much more parsimonious and easier to
interpret than the latter.

The log-multiplicative effects of age for model X, can be inter-
preted as the typical age-specific distance between any two groups of
an education and race/ethnicity combination. The normalized esti-
mates reveal that the typical distance, net of differing levels, starts
very large and then rapidly narrows down before it grows a little
toward the last age interval. This pattern is a reverse image of the
log-additive effects of age, which represent the (unweighted) average
age-variation in the hazard rate of first marriage. The normalized
log-multiplicative effects of educational attainment parallel the log-
additive effects of educational attainment in that the effects are the
largest for those with less than 12 years of schooling and decline
monotonically. We observe that for lower educational groups the log-
multiplicative term moves in the direction compensating the general
age pattern, and for higher educational groups the log-multiplicative
term moves in the direction exacerbating the general age pattern.
Thus lower educational attainment is associated with an overall
higher hazard rate of first marriage but a flatter age pattern, and vice
versa. This is shown graphically in Figure 5(a). Note that the differ-
ence between Figures 5(a) and 2(a) is partly due to smoothing and
partly due to the control of race/ethnicity.

For the covariate of race/ethnicity, the rank order of the log-
additive effects is the opposite of the log-multiplicative effects. The
log-additive effects of race/ethnicity tell us that on average whites
have higher hazards than those of Mexican origin, who in turn have
higher hazards than blacks. The log-multiplicative effects reveal that
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the race/ethnicity differences start small in early ages, grow to max-
ima in the middle range (age 20s) and narrow slightly down toward
the end. Figure 5(b) plots the logged hazards predicted by age and
race/ethnicity. Due to the statistical control of educational attain-
ment, Figure 5(b) differs noticeably from Figure 2(b). In Figure 2(b)
the observed hazard of whites appears to be lower than that of blacks
and those of Mexican origin in early and later ages because of the
indirect effect of whites’ overall higher educational attainment.

5. CONCLUSION

This paper proposes a new class of models, log-multiplicative mod-
els, for the analysis of nonproportionality in hazard rates. The new
models are variants of the log-linear (or log-rate) model for discrete-
time, discrete-covariate data, with the number of events as the depen-
dent variable and exposure as a control. Both event-history data and
synthetic cohort data can be used. The new approach builds upon
Goodman’s (1979) innovative log-multiplicative specification for
two-way tables and later development of the log-multiplicative speci-
fication for multiway tables (notably Clogg 1982a; Goodman 1986;
Becker and Clogg 1989; Xie 1991, 1992).

The new models fall between the simple case of log-additive
models for proportionality and the complicated case of uncon-
strained interaction models for nonproportionality. In a variety of
applications, log-multiplicative models may fit observed data almost
as well as the comparable unconstrained interaction models. But
log-multiplicative models in general are much simpler and easier to
interpret. The parsimony of log-multiplicative models is achieved
by separating nonproportionality into two components: the nonpro-
portionality pattern over time and the nonproportionality level
across groups. This assumption may be reasonable for many re-
search situations in social science and is always testable.

APPENDIX A: THE DATA

Two data sets were used in this paper. The first (given in Table 1) was
drawn from the U.S. National Longitudinal Mortality Study (Rogot
et al. 1988, Table 6). Exposure (upper panel) was measured not in
person-years, but in person-periods, with a period being the length
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of the study. The study design was such that the length of the follow-
up period differed for eight cohorts of subjects. Ideally, the re-
searcher should distinguish the eight cohorts in an analysis of the
data. For the illustrative purposes of this paper, I took the simplistic
approach of combining all subjects in order to have a large enough
sample, as was done in Rogot et al. (1988). For each age x education
combination, a death was assumed to contribute 0.5 person-period of
exposure. Strictly speaking, the data were not event-history data,
because the study did not follow the same individuals over time.
Rather, the data in Table 1 provide us a snapshot of individuals of
different ages at one point in time. Thus there are no logical con-
straints on amounts of exposure between two adjacent age intervals.

In contrast, the second data set (given in Table 2), extracted
from the 1980 June Current Population Survey by Wu and Tuma
(1990), is more typical of event-history data. Educational attainment
was measured using four categories, and race/ethnicity using three.
For cells in the upper right-hand corner, educational attainment was
likely to follow rather than precede the event of first marriage, thus
violating the direction of causality implicit in regression models treat-
ing education as a covariate. Still, I chose this example because
nonproportionality was well researched in this case by Wu and Tuma
(1990), with the caution that the effects of education should be inter-
preted as results of a host of factors, including population heterogene-
ity and true causality of education. Since substantive interest lies in
comparisons of the hazard rates of first marriage by educational
attainment and race/ethnicity, I weighted the data for whites by 10
percent so that the three race/ethnicity groups would have compara-
ble numbers of observations. Otherwise, whites would dominate the
age patterns and the educational effects. This treatment is tanta-
mount to a stratified sample with whites undersampled and blacks
and women of Mexican origin oversampled.

For the second data set, I divided the age variable originally
measured in months into 15 intervals, with small intervals at early
ages and wide intervals at later ages. As in the case of smoothing
within a neighborhood for local hazard models (Wu and Tuma 1990,
pp. 155-56), aggregation for discrete-time models imposes the as-
sumption of within-interval homogeneity. The choice of interval
widths should balance the need for smoothing, on the one hand,
against that for preserving information on time-dependency, on the
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other. Intervals that are too wide, for example, may seriously conceal
variation in hazards over time. In practice, the researcher should try
to ensure that there are enough observed events (d) in each cell after
covariates are introduced. I experimented with several schemes for
categorizing time before choosing the 15-category scheme presented
in Table 2. Similar results were found with tables obtained using
other schemes.

In calculating exposure for the second data set, I used the
following formulas (adapted from Laird and Oliver 1981, Table 8):

O(tlz) = {n(tlz) — [d(tz) + w(dlz))/2}8(1), (A1)

where 7 is the number of never married respondents at the beginning
of an age interval, d and w are respectively the number of respon-
dents who were married and the number of respondents who were
censored during an age interval, and 6 is the interval duration in
years. Duration for the first age interval was set to 1.5 years, and for
the last age interval to 10 years. Arbitrary assignment was necessary
but would not greatly affect the substantive results, because all mod-
els presented in this paper included the main effects of discrete time.
The same approach was adopted by Laird and Oliver (1981). Also
note that exposure in Table 2 is constrained across age intervals
within a classification of covariates. That is, the number of subjects
at risk at any age equals the number of subjects at risk at the earlier
age minus the number of subjects who either experienced the event
or withdrew from the study at the earlier age:

n(flz) = n(t = 1|z) = [d(t = 1|z) + w(t = 1|2)]. (A2)

Because log(0) is included as a control variable with a constrained
coefficient of unity (equation 4), the implicit relationship of equation
(A2) in Table 2 has no bearing on the statistical estimation of the
models presented. Thus this distinction between the two data sets is
inconsequential.

APPENDIX B: HYPOTHETICAL EXAMPLES

Table B1 describes the three hypothetical examples graphed in Fig-
ures 3(a) through 3(c). They were all constructed using equation (9),
but with different combinations of model parameters. For each exam-



TABLE B1

Three Hypothetical Examples

337

Log of Hazard (Main
Entries)

Example A, as in Figure 3(a)

Covariate Dimension

i 1 2 3 4 5
a; 0.0 0.0 0.0 0.0 0.0
Time Dimension & 2.0 1.0 0.0 -1.0 -2.0
t A, 7,
1 -6.0 0.0 -6.0 -6.0 -6.0 -6.0 -6.0
2 -5.0 0.5 -4.0 -4.5 -5.0 -5.5 -6.0
3 -4.0 1.0 -2.0 -3.0 -4.0 -5.0 -6.0
4 -3.0 1.0 -1.0 -2.0 -3.0 -4.0 -5.0
5 -2.0 0.5 -1.0 -1.5 -2.0 -2.5 -3.0
6 -1.0 0.0 -1.0 -1.0 -1.0 -1.0 -1.0
Example B, as in Figure 3(b)
Log of Hazard (Main
Entries) Covariate Dimension
i 1 2 3 4 S
a; -2.0 -1.0 0.0 1.0 2.0
Time Dimension & 2.0 1.0 0.0 -1.0 -2.0
t A, 7
1 -6.0 1.0 -6.0 -6.0 -6.0 -6.0 -6.0
2 -5.0 1.5 —4.0 —4.5 -5.0 -5.5 -6.0
3 —4.0 1.0 -4.0 -4.0 -4.0 -4.0 -4.0
4 -3.0 0.0 =5.0 -4.0 -3.0 -2.0 -1.0
S -2.0 0.5 -3.0 -2.5 -2.0 -1.5 -1.0
6 -1.0 1.5 0.0 -0.5 -1.0 -1.5 -2.0
Example C, as in Figure 3(c)
Log of Hazard (Main
Entries) Covariate Dimension
i 1 2 3 4 S
Q; -1.4 0.8 0.0 0.5 1.5
Time Dimension & 2.0 1.0 0.0 -1.0 -2.0
t A, 7,
1 -4.7 -0.3 -6.7 —4.2 —-4.7 -39 -2.6
2 -3.5 1.5 -1.9 -1.2 -3.5 -4.5 -5.0
3 -4.0 1.8 -1.8 -1.4 -4.0 -5.3 -6.1
4 -3.0 -0.5 -5.4 -2.7 -3.0 -2.0 -0.5
S -3.2 0.9 -2.8 -1.5 =32 -3.6 =35
6 -4.1 -0.5 -6.5 -3.8 -4.1 -3.1 -1.6
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ple, parameters along the time dimension are given in the first two
columns, and parameters along the covariate dimension in the first
two rows. Note that the parameters in Table B1 are not normalized
as are those in Tables 4 and 6. The main entries are the natural
logarithm of the hazard rate (i.e., log(h,)’s).
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