This article presents structural equation models with discrete dependent variables that
refer to occupational destinations. After assuming threshold measurement models and
structural models with normally distributed error terms, it is shown that the linear
relationships among observed and latent continuous variables can be treated in a way
that is similar to conventional structural equation models in the LISREL framework. The
models that are presented are simple cases of a large class of models that can be
estimated with the computer program LISCOMP. Reanalyzing data from the 1962
Occupational Changes in a Generation Survey, the models incorporate discrete occupa-
tional destinations into the classic Blau-Duncan model. Results indicate that although
the likelihood of becoming a manager, official, or proprietor is directly affected by

- parental social status, the chances of becoming a scientist or engineer are affected only
indirectly through education.

Structural Equation Models
for Ordinal Variables

An Analysis of Occupational Destination

YU XIE
University of Wisconsin-Madison

n sociological research, discrete dependent variables are fre-

quently encountered. Occupational destination, crime commis-
sion, marital status, educational transition, employment status, and
military enlistment are a few examples. Although the theoretical
foundations needed to analyze discrete dependent variables in the
framework of structural equations have been laid (Heckman, 1978;
Muthén, 1979, 1983, 1984; Winship and Mare, 1983), sociologists
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have generally avoided discrete dependent variables or have trans-
formed them into continuous variables when using structural equation
models. There is a need for methods of analysis that are accessible and
understandable as well as illustrative examples before sociologists
will routinely apply structural equation models to analyze discrete
dependent variables.

This article is intended to help serve this purpose. Unlike earlier
works on discrete dependent variables in structural equations, this
article introduces the subject through concrete sociological examples
rather than through formal mathematics. The examples are drawn
from a study of entry into scientific occupations. Extensions of these
models to other research areas, however, should be straightforward.
For didactic purposes, the following models are kept simple. The
assumption of threshold measurement is shown to allow the linear
relationships among observed and latent continuous variables to be
treated in the same way as in conventional structural equation models
in the LISREL framework. The models presented ate simple cases of
a large class of models that can be estimated with the computer
program LISCOMP.

THE ANALYSIS OF
OCCUPATIONAL DESTINATION
IN THE STRATIFICATION LITERATURE

The recent history of the study of social stratification and mobility
has witnessed the critical role of path analysis and structural equation
models in bringing status-attainment research to the state of cumula-
tive “normal science” (Bielby, 1981; Featherman, 1981). The classic
Blau-Duncan model, the Wisconsin model, and extended versions of
both have successfully illustrated how family background affects
one’s social status in modern society (Blau and Duncan, 1967; Sewell
et al., 1969; Duncan et al., 1972; Sewell and Hauser, 1975; Hauser
et al., 1983). The power of path analysis and structural equations in
these models is not simply to ascertain the total effects of parental
characteristics on their offspring’s status attainment in terms of
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reduced form coefficients, but rather to partition the total effects into
direct and indirect effects through intermediate processes in terms of
structural coefficients. For example, education has been found to be a
critical intervening factor that both transmits the influence of family
background and introduces effects of its own (Blau and Duncan, 1967;
Duncan et al., 1972). Over the last two decades, many other interven-
ing variables have been hypothesized and tested in modeling the
causal process of status attainment (for a review, see Campbell, 1983).

The traditional approach of structural equations in the LISREL
framework is restricted to analyzing continuous dependent variables.
This limitation stems from the fact that structural equations are sys-
tems of linear regression equations. When dependent variables are
discrete rather than continuous, linear models are not appropriate
(Hanushek and Jackson, 1977:180-186; Maddala, 1983:15-16). This
limitation of traditional structural equation models has given rise to a
renewed interest in the analysis of mobility tables, which lost its
popularity for many years following Duncan’s (1966) article, and to
the methodological innovations in the form of loglinear models
(Featherman and Hauser, 1978; Goodman, 1978, 1984; Duncan, 1979;
Hauser, 1979; Sobel et al., 1985). The shift in interest is justified
because for many research questions, such as those concerning oc-
cupational destination, occupation cannot be treated as a continuous
variable through the common practice of transforming occupations
into Duncan SEI scores. In these cases, occupation should be treated
as a discrete variable. Unlike structural equation models, the loglinear
analysis of mobility tables accounts for the discreteness of occupa-
tions. Moreover, the analysis of mobility tables allows us to investigate
“channels” and “barriers” in the mobility process, to use Blau and
Duncan’s terminology (1967:117), which are not subject to study
within the approach of structural equations using Duncan SEI scores
(Yamaguchi, 1983).

Unfortunately, the loglinear analysis of mobility tables raises other
problems. In theory, the discrete coding of occupations contains more
information than any occupational scoring, because the latter can be
obtained from the former but not vice versa. In practice, however, a
too-detailed classification of occupations not only makes modeling
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unfeasible, but more importantly, it also hinders ameaningful interpre-
tation of the results. As a consequence, researchers collapse detailed
occupational codes into major categories that are relatively homo-
geneous; but the cost of collapsing occupational categories is the loss
of information. Even though the use of Goodman’s (1981) statistical
tools minimizes information loss, it requires a strong conviction to
believe that occupations within a major occupational category are so
homogeneous that they can be treated as if they were identical.

Another shortcoming of the loglinear analysis of mobility tables is
the tendency to neglect intervening factors by devoting full attention
to two-way, origin-destination tables. Although path-analysis-like
loglinear models are possible for analyzing categorical data (e.g.,
Goodman, 1973), they are rarely used in empirical research. Limita-
tions of causal analysis involving loglinear models are widely known
(Fienberg, 1980:120-134). These limitations derive in part from the
fact that, no matter how the researcher envisions a causal relationship,
the assumptions underlying loglinear analysis are such that all vari-
ables are treated in a symmetrical way in the process of estimation
(Bishop et al., 1975). The classical distinction between independent,
or exogenous, variables and dependent, or endogenous, variables is
blurred. From here, the econometricians Heckman (1978) and Manski
and McFadden (1981) launch their critiques of the pervasive use of
loglinear models. To them, the loglinear analysis of discrete data is
analogous to the correlation analysis of continuous data and therefore
is incapable of uncovering structural relationships.

The models presented in this article are constructed to fill the gap
between the structural equations approach on the one hand and the
loglinear analysis approach on the other. The models treat observed
ordinal variables as outcomes of latent continuous variables that cross
fixed thresholds while retaining the structural components of conven-
tional structural equations. This is achieved with additional assump-
tions. Consequently, certain limitations of this approach are noted
below.
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STRUCTURAL EQUATION MODELS
WITH ORDINAL DEPENDENT VARIABLES:
LISCOMP MODELS

Historically, the problem of discrete variables arose in correlation
analysis. For a pair of dichotomous variables, the value of the Pearson
product moment correlation between them depends not only on the
strength of the relationship but also on the means of the variables (for
reviews, see Fienberg, 1980; Winship and Mare, 1983; Mislevy,
1986). The analytical results of Olsson (1979) and the Monte Carlo
results of Muthén and Kaplan (1985) provide direct evidence that
using consecutive values (e.g., 0, 1, 2, 3) to code ordinal variables
(when the variables are outcomes of crossing thresholds on latent
continuous variables distributed as multivariate normal) leads to in-
correct statistical inferences in factor analysis. The review of Bentler
and Chou (1987), however, suggests that when a variable has more
than four categories, the ordinary methods may not be worse than other
alternatives. When there are only three or fewer categories, the re-
searcher should consider other procedures that account for the dis-
creteness of the variable.

Constructing other types of correlation coefficients is one solution
to this problem. Joreskog and Sorbom (1986) have programmed
routines to compute canonical correlations, normal score correlatons,
polychoric correlations, and polyserial correlations in their program
PRELIS, which is used in combination with LISREL VII (Joreskog
and Sérbom, 1987). In brief, a canonical correlation is the correlation
between two ordinal variables whose values are replaced by optimal
scores that maximize the correlation; a normal score correlation is that
between two ordinal variables whose values are replaced by normal
scores determined from their marginal distributions; a polychoric
correlation is one between two latent continuous variables that are
assumed to be distributed as bivariate normal and to have generated
the observed ordinal variables through thresholds; and a polyserial
correlation is that between an observed continuous variable and a
latent continuous variable that underlies an ordinal variable, assuming
that the observed and the latent continuous variables follow a bivariate
normal distribution. See Kendall and Stuart (1979, chapters 26 and
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33) and Joreskog and S6rbom (1986, chapter 1) for explanations of
these types of correlations.

Joreskog and Sérbom (1984, 1987) recommend replacing Pearson
product moment correlations with polychoric and polyserial correla-
tions. This solution assumes bivariate normality between two latent
continuous variables (in the case of polychoric correlations) or be-
tween an observed and a latent continuous variable (in the case of
polyserial correlations). Psychologists are generally comfortable with
using polychoric and polyserial correlations because they can assume
in factor analysis that latent factors are normally distributed. For
structural analysts in sociological and economic research, however,
polychoric and polyserial correlations are not very helpful because
they would violate the desirable property of parameter invariance with
respect to changes in the marginal distributions of the independent
variables. This invariance property requires that assumptions be made
about error terms rather than about variables themselves.

Instead, sociologists and economists have approached the problem
from another direction: probit regressions (Heckman, 1978; Winship
and Mare, 1983).! In a standard probit regression, a latent continuous
variable is hypothesized to underlie an observed ordinal variable
(including a dichotomous variable as a special case). The observed
ordinal variable is the indicator of the latent continuous variable
through crossing thresholds. The latent variable is assumed to be
linearly dependent upon predetermined variables, and the error term
is assumed to be distributed as'standard normal. The idea behind the
incorporation of probit regressions into structural equation models is
simple: replace ordinal variables with their latent counterparts when
the ordinal variables are dependent variables. When ordinal variables
are independent, the researcher has the choice of using numerical
codings, dummies, or their latent counterparts (Heckman, 1978; Win-
ship and Mare, 1983, 1984).

This article assumes that both independent and dependent ordinal
variables enter a structural equation model in the form of latent
variables. With this restriction, a unified framework can be reached in
which ordinal variables are incorporated into structural models while
the structural part of conventional structural equations remains intact.
This case can be handled within Muthén’s LISCOMP program
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Figure 1: Blau-Duncan Model

Source: P. 170, The American Occupational Structure by Peter M. Blau and Otis Dudley Duncan. Copyright 1967
by Peter M. Blau and Otis Dudley Duncan. Reproduced by permission of The Free Press, a Division of Macmiilan,
Inc.

(Muthén, 1983, 1984, 1987). From this point on, these types of models
are referred to as “LISCOMP models.”

The restriction that ordinal variables enter structural equations only
indirectly through their latent variables is needed so that general
models can be estimated. Although other programs (Winship and
Mare, 1983; Avery and Hotz, 1985) can estimate simple models
without this restriction, more general models are hindered by com-
putational difficulties. By adding this restriction, all models currently
estimated with LISREL for continuous variables can be estimated with
LISCOMP for ordinal variables. These include nonrecursive models
(Duncan, 1975), MIMIC models (Hauser and Goldberger, 1971),
exploratory and confirmatory factor analysis (Long, 1983), multiple-
indicator models (Bielby et al.,, 1977), and models decomposing
contextual and individual effects (Hauser, 1988). Like LISREL,
LISCOMP is also capable of estimating models that compare inde-
pendent samples from multiple populations. Moreover, Tobit models
for censored dependent variables (Maddala, 1983; Amemiya, 1985;
Mare and Chen, 1986) can be incorporated into structural equation
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models within the unified framework. In this article, simple examples
are presented to illustrate the potential usefulness of LISCOMP
models. For a description of the full features of LISCOMP, consult
the LISCOMP manual (Muthén, 1987) and other papers (Muthén,
1983, 1984).

Although they are restrictive in the way in which ordinal variables
enter structural equations as independent variables, the LISCOMP
models are potentially very useful in sociological research. The re-
mainder of this article is devoted to illustrating how these models are
applied to analyze the problem of occupational destination.

MODELS OF OCCUPATIONAL DESTINATION:
WHO BECOME SCIENTISTS AND ENGINEERS?

The data are from the 1962 Occupational Changes in a Generation
(OCG) Survey. A large, nationally representative sample of the United
States male population, the OCG survey was conducted by the Bureau
of the Census as a supplement to the 1962 March Current Population
Survey (CPS) (Blau and Duncan, 1967). Historically, the OCG survey
and the subsequent Blau-Duncan model have served as the corner-
stones for later studies of social stratification. Figure 1 summarizes
Blau and Duncan’s (1967) basic findings about the way in which a
father’s characteristics affect a son’s social status. The numbers on the
diagram are path coefficients. The son’s occupation (Y) and first job
(W) and the father’s occupation (X) are measured in Duncan SEI
scores. Blau and Duncan found that most of the influence of the
father’s status (V, X) on the son’s occupation (Y) is mediated by the
son’s education (U) and first job (W). In particular, they specified that
there is no direct effect of the father’s education (V) on the son’s first
job (W) and current occupation (Y). In the language of structural
equations, the paths from V to W and from V to Y are constrained to
be zero.

In the present analysis, our first consideration is how family back-
ground affects one’s occupational destination as a scientist or en-
gineer. A study of one’s destination as a scientist or engineer not only
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TABLE 1
Correlation Matrix and Sample Statistics of the Exogenous Variables
Variable v X
V: Father's Education 1.000
X: Father's Occupation (SEI) .467 1.000
Mean 7.64 27.40
Standard Deviation 4.00 21.16

SOURCE: 1962 OCG Survey. The sample size is 14,401. See text for definitions of variables.

sheds light on the long-standing question of how scientists and en-
gineers are different from the general public in their social origins (for
a review, see Rever, 1973), but also contributes to our understanding
of social stratification in general (Xie, 1988). This is so because
scientists and engineers constitute a group that enjoys considerable
prestige, which generally ranks near the top (Duncan, 1961; Hodge
et al., 1964; Stevens and Featherman, 1981). There is reason to sus-
pect, however, that scientists and engineers differ from other social
“elites” such as politicians and businessmen. Scientific and engineer-
ing jobs almost always require much education and formal training.
The overwhelming majority of scientists and engineers have bach-
elor’s degrees. It is then reasonable to hypothesize that parental
characteristics affect one’s likelihood of becoming a scientist or
engineer almost entirely through education. That is, conditioned on
educational attainment, parental characteristics do not affect one’s
likelihood of being a scientist or engineer. In contrast, entry into a
business career may be mediated by education to a much smaller
degree. Past research has partially supported this hypothesis. Parental
status has been found to have a very small effect on the offspring’s
transition to further education (Mare, 1980) and occupational place-
ment (Hout, 1988) among college graduates. Therefore, some depar-
ture from the Blau-Duncan model is expected in that the father’s
occupation affects the son’s destination as a scientist or engineer only
indirectly through education.

For this analysis, all 25-64-year-old males for whom CPS and OCG
files were successfully merged are included. Observations are ex-
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TABLE 2
Descriptive Statistics of Discrete Dependent Variables

Variable Code Meaning Percent

S: Current Occupation o] Non-scientific/engineering 96.4

1 Scientific/engineering 3.6
F: First Job [¢] Non-scientific/engineering 98.3
1 Scientific/engineering 1.7
E: Education 0 0-7 years 13.4
1 8-11 years 32.6
2 12 years 29.0
3 13 and more years 25.0

SOURCE: 1962 OCG Survey. The sample size is 14,401. See text for definitions of variables.

cluded with nonresponse or invalid response to any of the following
five survey questions: respondent’s 1962 occupation, respondent’s
first full-time job after school, respondent’s education, father’s educa-
tion, and father’s occupation. This leaves 14,401 observations.

To measure who are scientists and engineers, a variable S is created
that equals 1 for scientists and engineers but 0 otherwise. Variable S
is constructed from the 1960 detailed census occupational codes. We
code S equal to 1 for those whose reported occupations fall into a set
of occupational categories that the Bureau of the Census defines as
constituting the scientific and engineering professions (U.S. Bureau
of the Census, 1969).2 By.the same rule, a dichotomous variable F is
made for the first job after completing school. Variable F equals 1 if
the first job is in science and engineering but 0 otherwise. The means
of S and F are 0.036 and 0.017, respectively. The son’s education was
collapsed from the original nine categories to four categories (0-7,
8-11, 12, and 13+).? The same categorization is adopted by Winship
and Mare (1984) in their exposition of ordered probit regression using
the same data. The ordinal variable that measures the son’s education
is denoted as E to distinguish it from the continuous variable U.
Variable V is measured by the midpoints of intervals of years of
father’s schooling; variable X is father’s SEI score. For descriptive
statistics of variables V, X, S, F, and E, see Tables 1 and 2.
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THE MEASUREMENT MODELS

In J6reskog and S6rbom’s LISREL framework, measurement mod-
els have played an important role in the development of structural
equation models. They have brought several statistical tools (e.g., path
analysis, structural equations, factor analysis, and reliability analysis)
together into a unified approach (Joreskog and Sérbom, 1984, 1987).
In this framework, all of the structural relationships, causal or non-
causal, are between latent factors. These latent factors manifest them-
selves through observed variables. The relationships between latent
factors and observed variables form “measurement models.” For the
special case of classical path models without latent constructs, latent
factors are simply allowed to be identical to observed variables.

When all dependent variables are continuous, measurement models
are traditionally constructed by specifying a set of linear regression
equations regressing observed variables on latent factors. One major
use of these measurement models is to set constraints on the observed
variables, thus allowing for hypothesis testing and assessment of
measurement errors (for example, Hauser and Goldberger, 1971;
Bielby et al., 1977; Hauser et al., 1983). When observed dependent
variables are ordinal, however, another type of measurement model is
needed to link observed ordinal variables to unobserved continuous
variables in a nonlinear and nonstochastic way through thresholds.*
Measurement models become critical in an analysis of ordinal depen-
dent variables.

In a measurement model of thresholds, there is a one-to-one cor-
respondence between an ordinal variable and its latent counterpart. To
denote the unobserved variable, a star is placed next to the name of its
corresponding observed variable. For example, assume that there is
an unobserved continuous variable S* that underlies the observed
dichotomous variable S. The variable S * can be thought of as measur-
ing one’s latent tendency of becoming a scientist or engineer. More
formally, specify:

Si=1 ifSP>0 [1]

Si=0 otherwise
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Latent E* 5(11 @< E ga,z az< E '<‘a3 a3< E
Observed E=0 E=1 E=2 E=3
U
a, a, e

Figure 2: A Graphic Presentation of the Measurement Model for Variable E

where the subscript i stands for the ith observation. Equation (1) says
that if everyone has a continuous, latent tendency to go into scientific
or engineering work, then some become scientists or engineers if their
latent tendencies exceed a threshold. Here the choice of 0 as the
threshold is arbitrary, because in practice the intercept term of the
regressors will absorb any fixed value. Similarly, we have a measure-
ment model relating F and F*:

Fi=1 ifF?> 0 2]

F;=0 otherwise
The above measurement model can be extended to the ordered

response case for variable E. Because variable E has four categories,
a measurement model with three thresholds is needed:

E,' =3 if a3< Ei* [3]
Ei =2 if Ay < E,“ s a3
Ei =1 if ap < Ei* < Oy

E,'= 0 ifEi*S [0 3]
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X F* F

Figure 3: Structural Modeling of the Occupational Destination of Scientist or Engineer, Model 1

where the o’s are the threshold parameters defining categorical inter-
vals on E *. For a sample of a single group, the estimation of the a’s
themselves is not interesting because they are completely determined
by the marginal distribution of E after the distributional form of E * is
assumed in normalization (this is discussed in more detail later).’
These estimates are not reported.

Figure 2 graphically illustrates the measurement model for the E
variable. It is shown that the observed ordered categorical variable E
is assumed to be a discrete translation of a latent continuous variable
E *. There are three thresholds (a’s) that divide the whole distribution
of E* into four intervals. The E variable takes discrete jumps when
E* crosses the thresholds.

Clearly, this type of measurement model is different from tradition-
al measurement models in the LISREL framework. Muthén (1983)
has named it “outer” measurement in contrast to the traditional “inner”
measurement. To emphasize the distinction between the two types of
measurement models, $*, F*, and E * are called “latent variables™ or
“unobserved variables,” and the terms “latent factors” and “theoretical
constructs” are reserved for traditional “inner” measurement models.
For models with multiple indicators that are ordered polytomous or
dichotomous, it is necessary to combine both types of measurement
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models, “inner” and “outer.” In this way, the structural part of con-
ventional structural equation models remains the same. In the course
of developing LISCOMP, Muthén has incorporated these two types
of measurement models into linear structural equation analysis. This
is where the term “LISCOMP” comes from, an acronym for the
“Analysis of Linear Structural Relations Using a Comprehensive
Measurement Model.”

THE STRUCTURAL MODELS

Our first model, which is shown in Figure 3, is based on the
Blau-Duncan model. Squares indicate observed variables, and circles
indicate latent variables. The diagram shows the one-to-one cor-
respondences between the observed variables S, F, and E, and the
latent variables S *, F*, and E *. These form the measurement models.
For the structural part, the following regression equations are used:

S*= ﬁS'll + BS‘F’F* + ﬁS‘E‘E* + ﬁS'XX+ Eg» [4]
F*= BF'll + BF‘E‘E* + ﬁpvxx‘.‘ Epe

E*= BE']I + ﬁE‘VV+ BEaxx"' Ep»

where the B’s are regression coefficients with the first subscript denot-
ing the dependent variable and the second subscript denoting the regres-
sor; the 1’s are intercept terms, and the ¢’s are error terms. The €’s are
assumed to be independent and identically distributed (i.i.d.) as stand-
ard normal with the cumulative probability function being

z

F@z) = f exp[-(tY 2))dt

(23!) 172
The equations then are separate probit regressions (Hanushek and
Jackson, 1977:179-216; Maddala, 1983:13-57; Amemiya, 1985:268-
286). The S* and F * equations are ordinary binary probit regressions,
and the E* equation is an ordered probit regression (Winship and
Mare, 1984).

The variances of £’s need to be normalized or the variances of latent
variables $*, F*, and E * will be indeterminate. For “inner’measure-
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ment models in conventional structural equations, normalization can
take one of two forms. The variance of a latent factor can be stan-
dardized (usually to 1) or the variance of the error term when the latent
factor is a dependent variable can be standardized. Or, one of its
loadings can be set to a constant (usually to 1). In the case of “outer”
measurement models with observed ordinal variables, loadings are
nonlinear and nonstochastically defined in equations (1)-(3). In addi-
tion, the variances of the latent variables need to be normalized
because “outer” measurement models do not define the scales of the
latent variables. We can normalize either the variances of the latent
variables or the variances of the errors. Within the syntax of LIS-
COMP, each of the error variances can be conveniently set to 1. Even
though logit models are widely used in the analysis of discrete data,
and the choice of the probit.versus the logit model is usually inconse-
quential for a single equation model with data from random sampling
(e.g., Maddala, 1983:23), it is necessary to use the probit in structural
equation models in order to account for a possible error covariance
structure (Winship and Mare, 1983:103-104).

A distinctive feature of the model here is that neither the exogenous
variables (X and V) nor the latent variables (S*, F*, and E*) are
assumed to be normal. Rather, our normality assumption pertains to
the error terms (Eg», €r+, and ¢ +). The exogenous variables (X and V)
are unrestricted and retain their original observed values. This con-
trasts with the practice of using polyserial correlations, which assume
bivariate normality for the pair of a latent and an observed continuous
variable. In this model, the latent variables are distributed as multi-
variate normal conditional on the exogenous variables. Note that the
sample statistics of the exogenous variables in Table 1 will not enter
the estimation of the model. Rather, the estimation procedure is
“conditional” on these statistics. In this model, the error covariances
are specified to be 0. More complicated models may contain correlated
errors.

ESTIMATION

In the present analysis, only one observed variable is available for
each theoretical construct. The “inner” measurement model assumes
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TABLE 3
Comparing the Fit of Three Models of the
Occupational Destination of Scientist or Engineer

Model Description chi-square DF
1 Blau-Duncan Model (Flgure 3) 1.911 2
2 Deleting path from X to s* . 1.945 3
3 Deleting paths from X to s* and F 2.042 4
NOTEZTMWSQOIS".‘OLCN—WMMIhv g ple chi-sq istic as reported in LISCOMP
output. DF is the degrees of freedom iated with the chi-square statistic.

that the theoretical constructs are identical to their indicators, or that
there are no measurement errors. With the “outer” measurement
models (1)-(3), the dichotomous and ordered polytomous dependent
variables S, F, and E can be incorporated into the general framework
of structural equations as shown in (4). There, only latent variables
and exogenous variables are used. The observed ordinal variables are
left out of the structural equations. An unobserved/observed pair can
be conveniently treated as a single variable.

Full information likelihood estimation is unfeasible at the present
time for most models of this kind because of computational difficulties
of integration over the multivariate normal distribution. Instead,
Muthén’s LISCOMP provides a three-stage limited information gen-
eralized least squares (GLS) estimator. Muthén’s GLS gives consis-
tent estimates of parameters and their standard errors, and provides a
large-sample chi-square test of model fit. Moreover, the difference in
chi-squares between two nested models follows a chi-square distribu-
tion with degrees of freedom equal to the difference in the degrees of
freedom of the two models, given that the more restrictive model is
correct. Muthén’s GLS solution is fast enough for practical use with
a reasonable number of latent variables (fewer than 20) (Muthén,
1983; Mislevy, 1986). Because the GLS estimates are only asymptoti-
cally correct, large samples are required for the estimates to be
trustworthy. In the following, Muthén’s GLS is used directly without
explanation of the estimation procedures. Readers interested in
Muthén’s GLS should consult other materials (Muthén, 1983;
Muthén, 1984).
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TABLE 4
Estimated Structural Probit Coefficients for Model 1, Table 3
Dependent Independent Variables
Variable F* E* X v R2
E* 0.018 0.092 0.291
(0.001) (0.003)
[0.321] [0.310)
F* 0.607 0.000 0.342
(0.020) (0.001)
[0.585) [0.000]
s* 0.461 0.246 0.000 0.376
(0.025)  (0.023) (0.001)
[0.449] [0.231) [0.000]

NOTE: Standard errors are in parentheses. Path coefficients are in brackets. For definitions of variables, see text
and Figure 3. Estimates were obtained using LISCOMP. For modet fit, see Table 3.

RESULTS

The measurement of goodness of fit for Model 1 is reported in the
first line of Table 3. Estimates of the structural coefficients, their
standard errors, and path coefficients are given in Table 4.5

Variables V and X have natural scales, given in Table 1, but the
scales of latent variables $ *, F*, and E * are not defined until the error
variances are set to 1’s. The variances of S$*, F*, and E * are deter-
mined by the estimated coefficients and variances of the predeter-
mined variables. For example,

V(E*) = ﬁ%"’VV(V) + ﬁ%:*xV(X) + 2Bgsy Bpax Cov (V, X) + V (egs) [5]

where we know that V (g «) is normalized to 1. From this procedure,
calculation gives: V(E*) = 1.41,V(F*) = 1.52,and V(S*) = 1.60.
Once the estimated variances of the latent variables are known, R%’s
and path coefficients can be easily calculated.” Note that both the
variances of the latent variables and the R%’s, unlike the usual case
with continuous dependent variables, are not sample analogs of pop-
ulation moments because these sample analogs do not exist for probit
regressions. Instead, the reported numbers are estimates that are only
asymptotically correct (McKelvey and Zavoina, 1975:112).
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TABLE §
Estimated Structural Probit Coeffictents for Model 3, Table 3

Dependent Ix;\dependent Variables )
Variable F* E X v R
E* 0.018 0.092 0.291
(0.000) (0.003)
[0.321] [0.310]
F* 0.603 0.339
(0.018)
[0.582)
s* 0.463 0.246 0.377
(0.024) (0.022)
{0.450} [0.231)

NOTE: Standard errors are in parentheses. Path coefficients are in brackets. For definitions of variables, see text
and Figure 4. Estimates were obtained using LISCOMP. For model fit, see Table 3.

Overall, Model 1 fits the data well (x> = 1.911 for 2 degrees of
freedom). A look at the estimates, however, reveals that the direct
effects of a father’s occupation on a son’s likelihood of being a
scientist or engineer for first and current jobs are estimated to be 0.
This finding supports the hypothesis that recruitment into scientific
and engineering professions is mostly mediated by educational attain-
ment. Family background has its effects, but only through making
education more accessible. Controlling for education, the chances of
being a scientist or engineer are virtually the same for everyone. To
test this hypothesis formally in a different way, further restrictions are
made in Models 2 and 3, as shown in Table 3. Observe that deleting
the paths from X to F* and E * does not increase the %> measure by
much. Taking the difference in the % statistics between the two nested
models (Models 1 and 3), we have a %2 test statistic of 0.131 for two
degrees of freedom. The parsimonious model, Model 3, is therefore
retained. The hypothesis that the effect of parental characteristics on
the entry into scientific and engineering occupations is mediated by
education is confirmed. Table 5 displays the estimated parameters for
Model 3. For a graphic presentation of the final model, see Figure 4.

The parameter estimates are probit coefficients, interpretations of
which can be made in terms of probabilities through nonlinear trans-
formations. Because the latent variables do not have natural scales, it
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X F* F

Figure 4: Structural Modeling of the Occupational Destination of Scientist or Engineer, Model 3

is probable that, unlike the usual case with continuous dependent
variables, the path coefficients, which presume unit variances of the
latent and observed variables, are more meaningful than the regression
coefficients.

To interpret these effects in terms of probabilities, evaluation can
be done at the sample means of the dependent variables. For example,
to determine the effect of education on the likelihood of being a
scientist or engineer, evaluation is done at the mean of S (0.036, Table
2). Let ageg+ be the effect of E* on S* in the metric of path coeffi-
cients. The effect in probability (ps«£+) can be written as:?

Psgr = Ogups X Ogs x ¢(D7 (My)) [6]

where o;. is the standard deviation of the latent variable S*, ¢ is the
standard normal density function, ®! is the inverse function of the
standard normal cumulative function, and Mj is the sample mean of
S. The formula is derived from Hanushek and Jackson (1977:189).
The standard deviation of S * is needed to convert the scale of the path
coefficient (as.z+) into that of a probit coefficient. That is, Olgeg+ X O
gives the standardized probit coefficient, or the induced change in the
probit as a result of a standard deviation change in the independent
variable. If the researcher prefers to evaluate the effect in probability
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in terms of the original scale of the independent variable, he or she can
substitute the structural probit coefficient (Bg++) for ag.gs x Os- in (6).

Equation (6) states that the effect of the independent variable £ *
on the probability that § = 1 is nonlinear, depending on the sample
mean of S, where the effect in probability is evaluated. The effect
reaches the maximum at Mg = 0.5 and decreases symmetrically toward
0 as Mg moves to both extremes (0 and 1). Therefore, the pg«g«
coefficient cannot be a structural parameter, because a change in the
marginal distribution of other variables will affect Mg and consequent-
ly will affect the pg«£« coefficient.

One can interpret a p coefficient as the relative change in dependent
probability induced by a standard deviation change in the predeter-
mined variable. From equation (6), a standard deviation change in E*
can be calculated to introduce a change of 0.0292 in the probability of
S = 1. Compared to the sample mean of S (0.036), this is not a small
number.

The rule for decomposing total effects into direct and indirect
effects in conventional structural equation models (Duncan, 1975)still
holds for LISCOMP models. From Table 5, the total effect (in the
metric of path coefficients) of V on §* can be calculated to consist of
two indirect effects: V—>E* — §* (0.072)and V—->E* > F* > S *
(0.083). Likewise, the total effect of X on S$* can be decomposed into
indirect effect X — E* — §* (0.074) and indirect effect X — E* —
F* — §* (0.084). The direct effects of V and X on F* and S* have
been specified to be 0 in the model. The total effectof VonS* is 0.153,
and that of X on §* is 0.158. They are of a similar scale. Compare the
results with the original Blau-Duncan model, which is concerned with
the general process of status attainment. It can be easily calculated
from Figure 1 that the total effect of V on Y is 0.160, which is very
close to the estimate of the total effect of V on S * (0.153). But the total
effect of X on Y is 0.322, a number much larger than that of X on S*
(0.158) in the model. In terms of probability, we can follow the same
procedure as equation (6) and obtain that the total effect of V on S in
probability is 0.0193, and that of X is 0.0199.

To summarize, it is shown that scientific and engineering occupa-
tions have a recruitment pattern that is different from the Blau-Duncan
status attainment model. A father’s occupation affects a son’s like-
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lihood of being a scientist or engineer by affecting the son’s educa-
tional attainment. Beyond that, a father’s status (either his occupation
or his education) does not have an effect. Or, in the terminology of
structural modeling, the direct effects of a father’s education (V) and
occupation (X) on a son’s status of being a scientist or engineer (S)
have been found to be 0.

ANOTHER EXAMPLE:
WHO BECOME MANAGERS,
OFFICIALS, AND PROPRIETORS?

Are scientists and engineers truly unique? Or is the structural
equation model with occupational destination as the dependent vari-
able incapable of detecting the direct effect of family background? In
this section of the article, another occupational group—managers,
officials, and proprietors—is studied.

Managers, officials, and proprietors are defined according to the
1960 census occupational codes. Farmers are excluded.’ As do scien-
tists and engineers, the group of managers, officials, and proprietors
generally have high social status (Duncan, 1961; Blau and Duncan,
1967; Stevens and Featherman, 1981). The recruitment process into
these occupations, however, should not be much different from the
general pattern of vertical mobility observed by Blau and Duncan.
This should be true because high status families have economic
resources and social networks that can directly assist their offspring
toward successful careers as managers, officials, or proprietors. This
direct effect is not completely mediated by education (Yamaguchi,
1983). Given the same education, a child from a low status family
faces more barriers to success. Because there are many important
factors that are not related to formal education, he cannot overcome
all of his disadvantages through education. Therefore, it is not un-
reasonable to assume that parental characteristics have a direct effect
on one’s likelihood of becoming a manager, official, or proprietor.

The procedure for testing this hypothesis is similar to the previous
one. We define a dichotomous variable B, which equals 1 if the
respondent is in the occupations of managers, officials, and pro-
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TABLE 6
Comparing the Fit of Three Models
of the Occupational Destination of Manager, Official, or Proprietor

Model Description ‘ chi-square DF
1 Blau-Duncan Model . 3.545 2
2 Deleting path from X to B 27.595 3
3 Deleting paths from X to B* and T* 95.441 4
NOTE: Th ple size is 14,401.Chi-sq tands for the larg: fe chi-squar istic as reported in LISCOMP
output. DF is the degr of freed: iated with the chi-sq ist

prietors, but equals 0 otherwise. Similarly, T equals 1 if his first job is
in these occupations but 0 otherwise. B and T have means of 0.157
and 0.018, respectively. Corresponding to B and T, latent variables
B* and T* are constructed. The four-category coding of son’s educa-
tion E and its latent counterpart E* is retained. Father’s education V
and father’s occupational SEI score X remain unchanged. The three
models that were run before are estimated with these different depen-
dent variables. The test statistics of model fit are reported in Table 6.

It is evident from Table 6 that the Blau-Duncan model holds well
for modeling the process of becoming managers, officials, and propri-
etors. A father’s occupational status directly affects a son’s likelihood
of becoming a manager, official, or proprietor at his first job and
current job. The effect of family background is not completely medi-
ated through son’s education. The % tests between Model 1 and Model
2 (24.050 for 1 degree of freedom) and between Model 1 and Model
3 (91.896 for 2 degrees of freedom) reject the parsimonious Model 2
and Model 3 in favor of Model 1. In Table 7, all of the estimated
coefficients are positive and significantly different from 0. The hy-
pothesis is verified that offspring from high status families are more
likely to become managers, officials, and proprietors given the same
amount of education. This result reconfirms Yamaguchi’s (1983)
finding that education explains the effect of fathers’ occupations on
the likelihood of being professionals, but not the likelihood of being
managers, officials, or proprietors. Notice also that the path coeffi-
cients of E* on T* and B* are smaller than those of E* on F* and S*
in Table 5. This suggests that education is a less powerful determinant
of the recruitment process into managers, officials, and proprietors
than that into science and engineering. As a consequence, the R2’s of
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TABLE 7
Estimated Structural Probit Coefficients of Model 1, Table 6

Dependent Independent Variables 2
variable T* o X v R
g* 0.018 0.092 0.291
(0.001) (0.003)
{0.321} [0.310]
T* 0.213 0.006 ; 0.099
(0.026) (0.001)
{0.240]  [0.121)
B* 0.320 0.101 0.004 0.128
{0.030) (0.016) (0.001)
[0.315) [0.112] {0.079]

NOTE: Standard ervors are in parentheses. Pmmmhmm.Formmonsmmues. see text.
Estimates weré obtained using LISCOMP. For model fit, see Table 6

T* and B * equations are smaller than those of F* and S * equations in
Table 5. ‘

CONCLUSION

This analysis of the process of becoming scientists and engineers
and the process of becoming managers, officials, and proprietors has
demonstrated how one can study occupational destination within the
structural equations approach. It has been shown that different occupa-
tions may have different recruitment patterns, suggesting that the
occupational structure is nonlinear and multidimensional. By focusing
on entries into particular occupations, knowledge of how social mo-
bility operates through various “channels” increases. Science and
engineering, for example, were shown to be almost completely medi-
ated by educational attainment. There, parental characteristics affect
one’s destination as a scientist or engineer only indirectly, by making
education more accessible. In contrast, one’s likelihood of becoming
a manager, official, or proprietor is largely dependent on the father’s
social status, given the same amount of education.

The structural equations approach outlined in this paper has the
advantage of modeling a causal structure with intermediate processes.
Total effects are partitioned into direct and indirect effects in terms of
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structural coefficients. This is an important gain over loglinear anal-
ysis of mobility tables, which often focuses on two-way mobility
tables. The structural models of occupational destination are also an
advance over conventional structural equations in the LISREL frame-
work. Ordered polytomous variables and dichotomous variables need
not be transformed into continuous variables on an arbitrary basis. The
conditional probability of discrete dependent variables in a set of
structural equations can be studied.

There are certain weaknesses in the models presented. Only dichot-
omous and ordinal variables have been dealt with. The more general
case of unordered polytomous dependent variables cannot be handled
within this approach. They need to be analyzed with loglinear models
or various logit and probit models (Bishop et al., 1975; Maddala, 1983;
Long, 1987). In our application to the occupational destination prob-
lem, this limitation means that only one occupation at a time can be
dealt with because occupations cannot be formed into an ordinal
variable. In these examples this problem was avoided by considering
two pairs of occupational destinations separately. This solution has a
heuristic value. But the results from two analyses cannot be formally
combined together because the categorical divisions of the dependent
variables overlap. Another limitation of these models is the assump-
tion that there is a latent continuous variable underlying an observed
discrete variable through a threshold measurement model. The as-
sumption of a threshold measurement model may not be appropriate
in all cases.

Nevertheless, these structural equation models of occupational
destination open up more research areas and offer alternative research
methods. They provide an example of sociological applications of the
LISCOMP models, which can be viewed as a natural extension of
structural equation models and probit analysis. The limitations listed
in the paragraph above also apply to probit analysis. As long as the
researcher knows when a probit analysis is appropriate, the incorpora-
tion of probit analysis into structural equation models can expand the
capacity for analyzing discrete data. With the recent sophistication of
the computer program LISCOMP, more sociological applications of
structural equations with ordered dependent variables should be seen
in the near future.
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APPENDIX: AN EXAMPLE OF CONTROL FILES IN LISCOMP

The following LISCOMP control file was used to estimate Model 1 of
Table 3. The estimated coefficients are reported in Table 4.

TI BLAU-DUNCAN MODEL: SCIENTISTS AND ENGINEERS
DA IY=3 IX=2 NO=14401 - TR=OT VT=OT

TE 113 ’

TT 113

CT .5 .5 2.5 4.5 5.5

MO MO=SE P2 P3 NE=3 LY=FI BE=FI GA=FI PS=FI
FR GA(3,1) GA(2,2) GA(1,2) GA(3,2)

FR BE(2,3) BE(1,3) BE(1,2)

VA 1. LY(1,1) LY(2,2) LY(3,3)

VA 1. PS(1,1) PS(2,2) PS(3,3)

OU WF ES SE ET

RA FO
(F1.0,2X,F1.0,4X%,F1.0,4X,F3.0,F2.0,3X)

NOTES

1. Winship and Mare (1983) also discuss binary models with responses generated from
binomial trials. These types of models are not discussed here for two reasons. First, these models
are not identifiable without auxiliary information. Second, with slight modifications, these
models can be viewed as being of the same class of models as those considered in this article.

2. Specifically, the 1960 census occupational codes 21, 31-53, 80-93, 130-145, and 172-175
are used to distinguish scientists and engineers from others.

3. Different coding schemes also were tried, such as the original nine categories and the two
categories (college education versus other). The results are very similar.

4. Although there are no explicit stochastic terms in measurement models (1-3), the
structural equations (4) contain stochastic errors (¢’s). These stochastic errors (€”s) can be viewed
as stemming both from the measurement models (1-3) and from the structural models (4). For
identification purposes, stochastic terms from both sources are combined into €’s in equations
).

5. These thresholds divide the latent variable’s support into intervals whose probabilities
map those given by the observed ordinal variable. For example, if the latent variable E* is
distributed as standard normal, a1 = @ '[P(E = 0)], 02= ® '[P(E = 0) + P(E = 1)], and
a3 = ¢'1(P(E = 0)+P(E = 1)+ P(E = 2)),where ® !is the inverse function of the standard
normal cumulative probability, and P(E) is the marginal probability of variable E (E = 0,1, 2,
3).

6. The LISCOMP control file for this model is given in the Appendix. Additional control
and output files are available from the author upon request.

7. For models with exogenous variables, such as those estimated in this article, it is not
possible to obtain the correct R 25 and path coefficients from standardized solutions reported
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by LISCOMP 0.1. This is because the LISCOMP standardized solution refers to the case of unit
variances of latent variables conditional on exogenous variables. The path coefficients that are
normally defined assume unit variances of all variables uncondmonal on exogenous variables.
It is possible, however, to calculate path coefficients and R 2 using the procedure described in
cquation (5).

8. This formula applies to oominuous independent variables. When the independent variable
of interest is dichotomous (say, D =0, 1), the proper way is to take the difference of two predicted
probabilities, one evaluated at D = 0 and the sample means of all other independent varisbles,
and the other evaluated at D = 1 and the sample means of all other independent variables.

9. In terms of the 1960 census occupational codes, the definition includes codes 250 to 290.
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